MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn3 Structured version   Visualization version   Unicode version

Theorem unisn3 4453
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 4256 . . 3  |-  ( A  e.  B  ->  { x  e.  B  |  x  =  A }  =  { A } )
21unieqd 4446 . 2  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  U. { A }
)
3 unisng 4452 . 2  |-  ( A  e.  B  ->  U. { A }  =  A
)
42, 3eqtrd 2656 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator