Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dveeq12 Structured version   Visualization version   Unicode version

Theorem wl-dveeq12 33311
Description: The current form of ax-13 2246 has a particular disadvantage: The condition  -.  x  =  y is less versatile than the general form  -.  A. x x  =  y. You need ax-10 2019 to arrive at the more general form presented here. You need 19.8a 2052 (or ax-12 2047) to restore  y  =  z from  E. x y  =  z again. (Contributed by Wolf Lammen, 9-Jun-2021.)
Assertion
Ref Expression
wl-dveeq12  |-  ( -. 
A. x  x  =  y  ->  ( E. x  z  =  y  ->  A. x  z  =  y ) )
Distinct variable group:    x, z

Proof of Theorem wl-dveeq12
StepHypRef Expression
1 exnal 1754 . 2  |-  ( E. x  -.  x  =  y  <->  -.  A. x  x  =  y )
2 hbe1 2021 . . 3  |-  ( E. x  z  =  y  ->  A. x E. x  z  =  y )
3 ax13lem2 2296 . . . . . 6  |-  ( -.  x  =  y  -> 
( E. x  z  =  y  ->  z  =  y ) )
4 ax13lem1 2248 . . . . . 6  |-  ( -.  x  =  y  -> 
( z  =  y  ->  A. x  z  =  y ) )
53, 4syldc 48 . . . . 5  |-  ( E. x  z  =  y  ->  ( -.  x  =  y  ->  A. x  z  =  y )
)
65aleximi 1759 . . . 4  |-  ( A. x E. x  z  =  y  ->  ( E. x  -.  x  =  y  ->  E. x A. x  z  =  y )
)
76com12 32 . . 3  |-  ( E. x  -.  x  =  y  ->  ( A. x E. x  z  =  y  ->  E. x A. x  z  =  y ) )
8 hbe1a 2022 . . 3  |-  ( E. x A. x  z  =  y  ->  A. x  z  =  y )
92, 7, 8syl56 36 . 2  |-  ( E. x  -.  x  =  y  ->  ( E. x  z  =  y  ->  A. x  z  =  y ) )
101, 9sylbir 225 1  |-  ( -. 
A. x  x  =  y  ->  ( E. x  z  =  y  ->  A. x  z  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator