HomeHome Metamath Proof Explorer
Theorem List (p. 334 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 33301-33400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremwl-nanbi2 33301 Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) (Revised by Wolf Lammen, 27-Jun-2020.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ph  -/\  ch )  <->  ( ps  -/\  ch )
 ) )
 
Theoremwl-naev 33302* If some set variables can assume different values, then any two distinct set variables cannot always be the same. (Contributed by Wolf Lammen, 10-Aug-2019.)
 |-  ( -.  A. x  x  =  y  ->  -.  A. u  u  =  v )
 
Theoremwl-hbae1 33303 This specialization of hbae 2315 does not depend on ax-11 2034. (Contributed by Wolf Lammen, 8-Aug-2021.)
 |-  ( A. x  x  =  y  ->  A. y A. x  x  =  y )
 
Theoremwl-naevhba1v 33304* An instance of hbn1w 1973 applied to equality. (Contributed by Wolf Lammen, 7-Apr-2021.)
 |-  ( -.  A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
 
Theoremwl-hbnaev 33305* Any variable is free in  -.  A. x x  =  y, if  x and  y are distinct. The latter condition can actually be lifted, but this version is easier to prove. The proof does not use ax-10 2019. (Contributed by Wolf Lammen, 9-Apr-2021.)
 |-  ( -.  A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
 
Theoremwl-spae 33306 Prove an instance of sp 2053 from ax-13 2246 and Tarski's FOL only, without distinct variable conditions. The antecedent  A. x x  =  y holds in a multi-object universe only if 
y is substituted for  x, or vice versa, i.e. both variables are effectively the same. The converse  -.  A. x x  =  y indicates that both variables are distinct, and it so provides a simple translation of a distinct variable condition to a logical term. In case studies  A. x x  =  y and 
-.  A. x x  =  y can help eliminating distinct variable conditions.

The antecedent  A. x x  =  y is expressed in the theorem's name by the abbreviation ae standing for 'all equal'.

Note that we cannot provide a logical predicate telling us directly whether a logical expression contains a particular variable, as such a construct would usually contradict ax-12 2047.

Note that this theorem is also provable from ax-12 2047 alone, so you can pick the axiom it is based on.

Compare this result to 19.3v 1897 and spaev 1978 having distinct variable conditions, but a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 5-Apr-2021.)

 |-  ( A. x  x  =  y  ->  x  =  y )
 
Theoremwl-cbv3vv 33307* Avoiding ax-11 2034. (Contributed by Wolf Lammen, 30-Aug-2021.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theoremwl-speqv 33308* Under the assumption  -.  x  =  y a specialized version of sp 2053 is provable from Tarski's FOL and ax13v 2247 only. Note that this reverts the implication in ax13lem1 2248, so in fact  ( -.  x  =  y  ->  ( A. x z  =  y  <-> 
z  =  y ) ) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
 |-  ( -.  x  =  y  ->  ( A. x  z  =  y  ->  z  =  y ) )
 
Theoremwl-19.8eqv 33309* Under the assumption  -.  x  =  y a specialized version of 19.8a 2052 is provable from Tarski's FOL and ax13v 2247 only. Note that this reverts the implication in ax13lem2 2296, so in fact  ( -.  x  =  y  ->  ( E. x z  =  y  <-> 
z  =  y ) ) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
 |-  ( -.  x  =  y  ->  ( z  =  y 
 ->  E. x  z  =  y ) )
 
Theoremwl-19.2reqv 33310* Under the assumption  -.  x  =  y the reverse direction of 19.2 1892 is provable from Tarski's FOL and ax13v 2247 only. Note that in conjunction with 19.2 1892 in fact  ( -.  x  =  y  ->  ( A. x
z  =  y  <->  E. x
z  =  y ) ) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
 |-  ( -.  x  =  y  ->  ( E. x  z  =  y  ->  A. x  z  =  y )
 )
 
Theoremwl-dveeq12 33311* The current form of ax-13 2246 has a particular disadvantage: The condition  -.  x  =  y is less versatile than the general form  -.  A. x x  =  y. You need ax-10 2019 to arrive at the more general form presented here. You need 19.8a 2052 (or ax-12 2047) to restore  y  =  z from  E. x y  =  z again. (Contributed by Wolf Lammen, 9-Jun-2021.)
 |-  ( -.  A. x  x  =  y  ->  ( E. x  z  =  y  ->  A. x  z  =  y ) )
 
Theoremwl-nfalv 33312* If  x is not present in  ph, it is not free in  A. y ph. (Contributed by Wolf Lammen, 11-Jan-2020.)
 |-  F/ x A. y ph
 
Theoremwl-nfimf1 33313 An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim 1825 in dvelimdf 2335 to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018.)
 |-  ( A. x ph  ->  ( F/ x ( ph  ->  ps )  <->  F/ x ps )
 )
 
Theoremwl-nfnbi 33314 Being free does not depend on an outside negation in an expression. This theorem is slightly more general than nfn 1784 or nfnd 1785. (Contributed by Wolf Lammen, 5-May-2018.)
 |-  ( F/ x ph  <->  F/ x  -.  ph )
 
Theoremwl-nfae1 33315 Unlike nfae 2316, this specialized theorem avoids ax-11 2034. (Contributed by Wolf Lammen, 26-Jun-2019.)
 |-  F/ x A. y  y  =  x
 
Theoremwl-nfnae1 33316 Unlike nfnae 2318, this specialized theorem avoids ax-11 2034. (Contributed by Wolf Lammen, 27-Jun-2019.)
 |-  F/ x  -.  A. y  y  =  x
 
Theoremwl-aetr 33317 A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. x  x  =  y  ->  ( A. x  x  =  z  ->  A. y  y  =  z ) )
 
Theoremwl-dral1d 33318 A version of dral1 2325 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 
x  =  y,  A. x x  =  y or  ph antecedent. wl-equsal1i 33329 and nf5di 2119 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x  x  =  y  ->  ( A. x ps  <->  A. y ch )
 ) )
 
Theoremwl-cbvalnaed 33319 wl-cbvalnae 33320 with a context. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ y ps )
 )   &    |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ x ch ) )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( A. x ps  <->  A. y ch )
 )
 
Theoremwl-cbvalnae 33320 A more general version of cbval 2271 when non-free properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf 2334, nfsb2 2360 or dveeq1 2300. (Contributed by Wolf Lammen, 4-Jun-2019.)
 |-  ( -.  A. x  x  =  y  ->  F/ y ph )   &    |-  ( -.  A. x  x  =  y  ->  F/ x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremwl-exeq 33321 The semantics of  E. x y  =  z. (Contributed by Wolf Lammen, 27-Apr-2018.)
 |-  ( E. x  y  =  z 
 <->  ( y  =  z  \/  A. x  x  =  y  \/  A. x  x  =  z
 ) )
 
Theoremwl-aleq 33322 The semantics of  A. x y  =  z. (Contributed by Wolf Lammen, 27-Apr-2018.)
 |-  ( A. x  y  =  z 
 <->  ( y  =  z 
 /\  ( A. x  x  =  y  <->  A. x  x  =  z ) ) )
 
Theoremwl-nfeqfb 33323 Extend nfeqf 2301 to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019.)
 |-  ( F/ x  y  =  z 
 <->  ( A. x  x  =  y  <->  A. x  x  =  z ) )
 
Theoremwl-nfs1t 33324 If  y is not free in  ph,  x is not free in  [
y  /  x ] ph. Closed form of nfs1 2365. (Contributed by Wolf Lammen, 27-Jul-2019.)
 |-  ( F/ y ph  ->  F/ x [ y  /  x ] ph )
 
Theoremwl-equsald 33325 Deduction version of equsal 2291. (Contributed by Wolf Lammen, 27-Jul-2019.)
 |-  F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ( x  =  y  ->  ps )  <->  ch ) )
 
Theoremwl-equsal 33326 A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 33325 first, and then deriving more specialized versions wl-equsal 33326 and wl-equsal1t 33327 then is more efficient than the other way round, which is possible, too. See also equsal 2291. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
 
Theoremwl-equsal1t 33327 The expression  x  =  y in antecedent position plays an important role in predicate logic, namely in implicit substitution. However, occasionally it is irrelevant, and can safely be dropped. A sufficient condition for this is when  x (or  y or both) is not free in  ph.

This theorem is more fundamental than equsal 2291, spimt 2253 or sbft 2379, to which it is related. (Contributed by Wolf Lammen, 19-Aug-2018.)

 |-  ( F/ x ph  ->  ( A. x ( x  =  y  ->  ph )  <->  ph ) )
 
Theoremwl-equsalcom 33328 This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.)
 |-  ( A. x ( x  =  y  ->  ph )  <->  A. x ( y  =  x  ->  ph )
 )
 
Theoremwl-equsal1i 33329 The antecedent  x  =  y is irrelevant, if one or both setvar variables are not free in  ph. (Contributed by Wolf Lammen, 1-Sep-2018.)
 |-  ( F/ x ph  \/  F/ y ph )   &    |-  ( x  =  y  ->  ph )   =>    |-  ph
 
Theoremwl-sb6rft 33330 A specialization of wl-equsal1t 33327. Closed form of sb6rf 2423. (Contributed by Wolf Lammen, 27-Jul-2019.)
 |-  ( F/ x ph  ->  ( ph 
 <-> 
 A. x ( x  =  y  ->  [ x  /  y ] ph )
 ) )
 
Theoremwl-sbrimt 33331 Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2396. (Contributed by Wolf Lammen, 26-Jul-2019.)
 |-  ( F/ x ph  ->  ( [ y  /  x ] ( ph  ->  ps )  <->  ( ph  ->  [ y  /  x ] ps ) ) )
 
Theoremwl-sblimt 33332 Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2396. (Contributed by Wolf Lammen, 26-Jul-2019.)
 |-  ( F/ x ps  ->  ( [ y  /  x ] ( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps ) ) )
 
Theoremwl-sb8t 33333 Substitution of variable in universal quantifier. Closed form of sb8 2424. (Contributed by Wolf Lammen, 27-Jul-2019.)
 |-  ( A. x F/ y ph  ->  ( A. x ph  <->  A. y [ y  /  x ] ph ) )
 
Theoremwl-sb8et 33334 Substitution of variable in universal quantifier. Closed form of sb8e 2425. (Contributed by Wolf Lammen, 27-Jul-2019.)
 |-  ( A. x F/ y ph  ->  ( E. x ph  <->  E. y [ y  /  x ] ph ) )
 
Theoremwl-sbhbt 33335 Closed form of sbhb 2438. Characterizing the expression  ph  ->  A. x ph using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  ( A. x F/ y ph  ->  ( ( ph  ->  A. x ph )  <->  A. y ( ph  ->  [ y  /  x ] ph ) ) )
 
Theoremwl-sbnf1 33336 Two ways expressing that  x is effectively not free in  ph. Simplified version of sbnf2 2439. Note: This theorem shows that sbnf2 2439 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  ( A. x F/ y ph  ->  ( F/ x ph  <->  A. x A. y ( ph  ->  [ y  /  x ] ph ) ) )
 
Theoremwl-equsb3 33337 equsb3 2432 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.)
 |-  ( -.  A. y  y  =  z  ->  ( [ x  /  y ] y  =  z  <->  x  =  z
 ) )
 
Theoremwl-equsb4 33338 Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable constraint. (Contributed by Wolf Lammen, 26-Jun-2019.)
 |-  ( -.  A. x  x  =  z  ->  ( [
 y  /  x ]
 y  =  z  <->  y  =  z
 ) )
 
Theoremwl-sb6nae 33339 Version of sb6 2429 suitable for elimination of unnecessary dv restrictions. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  ( -.  A. x  x  =  y  ->  ( [
 y  /  x ] ph 
 <-> 
 A. x ( x  =  y  ->  ph )
 ) )
 
Theoremwl-sb5nae 33340 Version of sb5 2430 suitable for elimination of unnecessary dv restrictions. (Contributed by Wolf Lammen, 28-Jul-2019.)
 |-  ( -.  A. x  x  =  y  ->  ( [
 y  /  x ] ph 
 <-> 
 E. x ( x  =  y  /\  ph )
 ) )
 
Theoremwl-2sb6d 33341 Version of 2sb6 2444 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.)
 |-  ( ph  ->  -.  A. y  y  =  x )   &    |-  ( ph  ->  -.  A. y  y  =  w )   &    |-  ( ph  ->  -.  A. y  y  =  z )   &    |-  ( ph  ->  -.  A. x  x  =  z )   =>    |-  ( ph  ->  ( [ z  /  x ] [ w  /  y ] ps  <->  A. x A. y
 ( ( x  =  z  /\  y  =  w )  ->  ps )
 ) )
 
Theoremwl-sbcom2d-lem1 33342* Lemma used to prove wl-sbcom2d 33344. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
 |-  (
 ( u  =  y 
 /\  v  =  w )  ->  ( -.  A. x  x  =  w 
 ->  ( [ u  /  x ] [ v  /  z ] ph  <->  [ y  /  x ] [ w  /  z ] ph ) ) )
 
Theoremwl-sbcom2d-lem2 33343* Lemma used to prove wl-sbcom2d 33344. (Contributed by Wolf Lammen, 10-Aug-2019.) (New usage is discouraged.)
 |-  ( -.  A. y  y  =  x  ->  ( [ u  /  x ] [
 v  /  y ] ph 
 <-> 
 A. x A. y
 ( ( x  =  u  /\  y  =  v )  ->  ph )
 ) )
 
Theoremwl-sbcom2d 33344 Version of sbcom2 2445 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.)
 |-  ( ph  ->  -.  A. x  x  =  w )   &    |-  ( ph  ->  -.  A. x  x  =  z )   &    |-  ( ph  ->  -.  A. z  z  =  y )   =>    |-  ( ph  ->  ( [ w  /  z ] [ y  /  x ] ps  <->  [ y  /  x ] [ w  /  z ] ps ) )
 
Theoremwl-sbalnae 33345 A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.)
 |-  (
 ( -.  A. x  x  =  y  /\  -. 
 A. x  x  =  z )  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremwl-sbal1 33346* A theorem used in elimination of disjoint variable restriction on  x and  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 15-May-1993.) Proof is based on wl-sbalnae 33345 now. See also sbal1 2460. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. x  x  =  z  ->  ( [
 z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremwl-sbal2 33347* Move quantifier in and out of substitution. Revised to remove a distinct variable constraint. (Contributed by NM, 2-Jan-2002.) Proof is based on wl-sbalnae 33345 now. See also sbal2 2461. (Revised by Wolf Lammen, 25-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ( [
 z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremwl-lem-exsb 33348* This theorem provides a basic working step in proving theorems about  E* or  E!. (Contributed by Wolf Lammen, 3-Oct-2019.)
 |-  ( x  =  y  ->  (
 ph 
 <-> 
 A. x ( x  =  y  ->  ph )
 ) )
 
Theoremwl-lem-nexmo 33349 This theorem provides a basic working step in proving theorems about  E* or  E!. (Contributed by Wolf Lammen, 3-Oct-2019.)
 |-  ( -.  E. x ph  ->  A. x ( ph  ->  x  =  z ) )
 
Theoremwl-lem-moexsb 33350* The antecedent  A. x ( ph  ->  x  =  z ) relates to  E* x ph, but is better suited for usage in proofs. Note that no distinct variable restriction is placed on 
ph.

This theorem provides a basic working step in proving theorems about  E* or  E!. (Contributed by Wolf Lammen, 3-Oct-2019.)

 |-  ( A. x ( ph  ->  x  =  z )  ->  ( E. x ph  <->  [ z  /  x ] ph ) )
 
Theoremwl-alanbii 33351 This theorem extends alanimi 1744 to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019.)
 |-  ( ph 
 <->  ( ps  /\  ch ) )   =>    |-  ( A. x ph  <->  ( A. x ps  /\  A. x ch ) )
 
Theoremwl-mo2df 33352 Version of mo2 2479 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate dv conditions. (Contributed by Wolf Lammen, 11-Aug-2019.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  -.  A. x  x  =  y )   &    |-  ( ph  ->  F/ y ps )   =>    |-  ( ph  ->  ( E* x ps  <->  E. y A. x ( ps  ->  x  =  y ) ) )
 
Theoremwl-mo2tf 33353 Closed form of mo2 2479 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.)
 |-  (
 ( -.  A. x  x  =  y  /\  A. x F/ y ph )  ->  ( E* x ph  <->  E. y A. x (
 ph  ->  x  =  y ) ) )
 
Theoremwl-eudf 33354 Version of df-eu 2474 with a context and a distinctor replacing a distinct variable condition. This version should be used only to eliminate dv conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  -.  A. x  x  =  y )   &    |-  ( ph  ->  F/ y ps )   =>    |-  ( ph  ->  ( E! x ps  <->  E. y A. x ( ps  <->  x  =  y
 ) ) )
 
Theoremwl-eutf 33355 Closed form of df-eu 2474 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
 |-  (
 ( -.  A. x  x  =  y  /\  A. x F/ y ph )  ->  ( E! x ph  <->  E. y A. x (
 ph 
 <->  x  =  y ) ) )
 
Theoremwl-euequ1f 33356 euequ1 2476 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.)
 |-  ( -.  A. x  x  =  y  ->  E! x  x  =  y )
 
Theoremwl-mo2t 33357* Closed form of mo2 2479. (Contributed by Wolf Lammen, 18-Aug-2019.)
 |-  ( A. x F/ y ph  ->  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) ) )
 
Theoremwl-mo3t 33358* Closed form of mo3 2507. (Contributed by Wolf Lammen, 18-Aug-2019.)
 |-  ( A. x F/ y ph  ->  ( E* x ph  <->  A. x A. y ( (
 ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
 
Theoremwl-sb8eut 33359 Substitution of variable in universal quantifier. Closed form of sb8eu 2503. (Contributed by Wolf Lammen, 11-Aug-2019.)
 |-  ( A. x F/ y ph  ->  ( E! x ph  <->  E! y [ y  /  x ] ph ) )
 
Theoremwl-sb8mot 33360 Substitution of variable in universal quantifier. Closed form of sb8mo 2504.

This theorem relates to wl-mo3t 33358, since replacing  ph with  [ y  /  x ] ph in the latter yields subexpressions like  [ x  / 
y ] [ y  /  x ] ph, which can be reduced to  ph via sbft 2379 and sbco 2412. So  E* x ph  <->  E* y [ y  /  x ] ph is provable from wl-mo3t 33358 in a simple fashion, unfortunately only if  x and  y are known to be distinct. To avoid any hassle with distinctors, we prefer to derive this theorem independently, ignoring the close connection between both theorems. From an educational standpoint, one would assume wl-mo3t 33358 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 11-Aug-2019.)

 |-  ( A. x F/ y ph  ->  ( E* x ph  <->  E* y [ y  /  x ] ph ) )
 
Axiomax-wl-11v 33361* Version of ax-11 2034 with distinct variable conditions. Currently implemented as an axiom to detect unintended references to the foundational axiom ax-11 2034. It will later be converted into a theorem directly based on ax-11 2034. (Contributed by Wolf Lammen, 28-Jun-2019.)
 |-  ( A. x A. y ph  ->  A. y A. x ph )
 
Theoremwl-ax11-lem1 33362 A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. x  x  =  y  ->  ( A. x  x  =  z  <->  A. y  y  =  z ) )
 
Theoremwl-ax11-lem2 33363* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  (
 ( A. u  u  =  y  /\  -.  A. x  x  =  y
 )  ->  A. x  u  =  y )
 
Theoremwl-ax11-lem3 33364* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( -.  A. x  x  =  y  ->  F/ x A. u  u  =  y )
 
Theoremwl-ax11-lem4 33365* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  F/ x ( A. u  u  =  y  /\  -. 
 A. x  x  =  y )
 
Theoremwl-ax11-lem5 33366 Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. u  u  =  y  ->  ( A. u [ u  /  y ] ph  <->  A. y ph )
 )
 
Theoremwl-ax11-lem6 33367* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  (
 ( A. u  u  =  y  /\  -.  A. x  x  =  y
 )  ->  ( A. u A. x [ u  /  y ] ph  <->  A. x A. y ph ) )
 
Theoremwl-ax11-lem7 33368 Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. x ( -.  A. x  x  =  y  /\  ph )  <->  ( -.  A. x  x  =  y  /\  A. x ph )
 )
 
Theoremwl-ax11-lem8 33369* Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  (
 ( A. u  u  =  y  /\  -.  A. x  x  =  y
 )  ->  ( A. u A. x [ u  /  y ] ph  <->  A. y A. x ph ) )
 
Theoremwl-ax11-lem9 33370 The easy part when  x coincides with  y. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. x  x  =  y  ->  ( A. y A. x ph  <->  A. x A. y ph ) )
 
Theoremwl-ax11-lem10 33371* We now have prepared everything. The unwanted variable  u is just in one place left. pm2.61 183 can be used in conjunction with wl-ax11-lem9 33370 to eliminate the second antecedent. Missing is something along the lines of ax-6 1888, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.)
 |-  ( A. y  y  =  u  ->  ( -.  A. x  x  =  y  ->  ( A. y A. x ph  ->  A. x A. y ph ) ) )
 
Theoremwl-sbcom3 33372 Substituting  y for  x and then  z for  y is equivalent to substituting  z for both  x and  y. Copy of ~? sbcom3OLD with a shortened proof.

Keep this theorem for a while here because an external reference to it exists.

(Contributed by Giovanni Mascellani, 8-Apr-2018.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
 
20.17.5  1. Bootstrapping classes
 
Syntaxwcel-wl 33373 Redefine  e. in a class context to avoid overloading and syntax check errors in mmj2. This operator requires  x and 
B distinct.
 wff  x  e.  B
 
Theoremwel-wl 33374 Redefine  e. in a set context to avoid syntax check errors in mmj2.  x and  y must be distinct. (Contributed by Wolf Lammen, 27-Nov-2021.)
 wff  x  e.  y
 
Syntaxwcel2-wl 33375 Redefine  e. in a class context to avoid overloading and syntax check errors in mmj2.  x and  B may not be distinct.
 wff  x  e.  B
 
Theoremwel2-wl 33376 Redefine  e. in a set context to avoid syntax check errors in mmj2. It is no syntactic error to assign the same variable to  x and  y. (Contributed by Wolf Lammen, 27-Nov-2021.)
 wff  x  e.  y
 
Axiomax-wl-8cl 33377* In ZFC, as presented in this document, classes are meant to be just a notational convenience, that can be reduced to pure set theory by means of df-clab 2609 (there stated in the eliminable property). That is, in an expression  x  e.  A, the class variable  A is implicitely assumed to represent an expression 
{ z  |  ph } with some appropriate  ph. Unfortunately,  ph syntactically covers any well-formed formula (wff), including  z  e.  A. This choice inevitably breaks the stated property. And it potentially carries over to any expression containing class variables. To fix this, a simple rule could exclude class variables at all in a class defining wff. A more elaborate rule could detect, and limit exclusion to proper classes (potentially problematic). In any case, the verification process should enforce any such rule during replacement, which it currently does not. The result is that we rely on the awareness of theorem designers to this problem. It seems, in ZFC proper classes are reduced to a few instances only, so a careful study may reveal that this limited use does not impose logical loop holes. It must be said, still, this necessary extra knowledge contradicts the general philosophy of Metamath, trying to establish certainty by a machine executable confirmation.

An extension to ZFC allows classes to exist on their own. Classes are then extensions to sets, also seamlessly extending the idea of elementhood. In order to move from the general to the specific, sets presuppose classes, so classes should be introduced first. This is somewhat in opposition to the classic order of introduction of syntactic elements, but has been carried out in the past, for example by the von-Neumann theory of classes.

In the context of Metamath, which is a purely text-based syntactical concept, no semantics are imposed at the very beginning on classes. Instead axioms will narrow down bit by bit how elementhood behaves in proofs, of course always with the intuitive understanding of a human in mind.

One basic property of elementhood we expect is that the 'element' is replaceable with something equal to it. Or that equality is finer grained than the elementhood relation. This idea is formally expressed in terms coined 'implicit substitution' in this document:  ( (
x  =  y )  ->  ( x  e.  A  <->  y  e.  A
) ). This axiom prepares this notation.

Note that particular constructions of classes like that in df-clab 2609 in fact allow to prove this axiom. Can we expect to eliminate this axiom then? No, the generalizing term still refers to an unexplained subterm  x  e.  A, so this axiom recurs in the general case. On the other hand, our axiom here stays true, even when just the existence of a class is known, as is often the case after applying the axiom of choice, without a chance to actually construct it.

We provide a version of this axiom, that requires all variables to be distinct. Step by step these restrictions are lifted, in the end covering the most general term  A  e.  B.

This axiom is meant as a replacement for ax-8 1992. (Contributed by Wolf Lammen, 27-Nov-2021.)

 |-  ( x  =  y  ->  ( x  e.  A  ->  y  e.  A ) )
 
Theoremwl-ax8clv1 33378* Lifting the distinct variable constraint on  x and  y in ax-wl-8cl 33377. (Contributed by Wolf Lammen, 27-Nov-2021.)
 |-  ( x  =  y  ->  ( x  e.  A  ->  y  e.  A ) )
 
Theoremwl-clelv2-just 33379* Show that the definition df-wl-clelv2 33380 is conservative. (Contributed by Wolf Lammen, 27-Nov-2021.)
 |-  ( x  e.  A  <->  A. u ( u  =  x  ->  u  e.  A ) )
 
Definitiondf-wl-clelv2 33380* Define the term  x  e.  A,  x in  A permitted. (Contributed by Wolf Lammen, 27-Nov-2021.)
 |-  ( x  e.  A  <->  A. u ( u  =  x  ->  u  e.  A ) )
 
Theoremwl-ax8clv2 33381 Axiom ax-wl-8cl 33377 carries over to our new definition df-wl-clelv2 33380. (Contributed by Wolf Lammen, 27-Nov-2021.)
 |-  ( x  =  y  ->  ( x  e.  A  ->  y  e.  A ) )
 
20.18  Mathbox for Brendan Leahy
 
Theoremrabiun 33382* Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.)
 |-  { x  e.  U_ y  e.  A  B  |  ph }  =  U_ y  e.  A  { x  e.  B  |  ph
 }
 
Theoremiundif1 33383* Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.)
 |-  U_ x  e.  A  ( B  \  C )  =  ( U_ x  e.  A  B  \  C )
 
Theoremimadifss 33384 The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.)
 |-  (
 ( F " A )  \  ( F " B ) )  C_  ( F " ( A 
 \  B ) )
 
Theoremcureq 33385 Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  ( A  =  B  -> curry  A  = curry  B )
 
Theoremunceq 33386 Equality theorem for uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  ( A  =  B  -> uncurry  A  = uncurry  B )
 
Theoremcurf 33387 Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  (
 ( F : ( A  X.  B ) --> C  /\  B  e.  ( V  \  { (/) } )  /\  C  e.  W ) 
 -> curry  F : A --> ( C 
 ^m  B ) )
 
Theoremuncf 33388 Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  ( F : A --> ( C 
 ^m  B )  -> uncurry  F : ( A  X.  B ) --> C )
 
Theoremcurfv 33389 Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  (
 ( ( F  Fn  ( V  X.  W ) 
 /\  A  e.  V  /\  B  e.  W ) 
 /\  W  e.  X )  ->  ( (curry  F `  A ) `  B )  =  ( A F B ) )
 
Theoremuncov 33390 Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( Auncurry  F B )  =  ( ( F `  A ) `  B ) )
 
Theoremcurunc 33391 Currying of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
 |-  (
 ( F : A --> ( C  ^m  B ) 
 /\  B  =/=  (/) )  -> curry uncurry  F  =  F )
 
Theoremunccur 33392 Uncurrying of currying. (Contributed by Brendan Leahy, 5-Jun-2021.)
 |-  (
 ( F : ( A  X.  B ) --> C  /\  B  e.  ( V  \  { (/) } )  /\  C  e.  W ) 
 -> uncurry curry  F  =  F )
 
Theoremphpreu 33393* Theorem related to pigeonhole principle. (Contributed by Brendan Leahy, 21-Aug-2020.)
 |-  (
 ( A  e.  Fin  /\  A  ~~  B ) 
 ->  ( A. x  e.  A  E. y  e.  B  x  =  C  <->  A. x  e.  A  E! y  e.  B  x  =  C ) )
 
Theoremfinixpnum 33394* A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.)
 |-  (
 ( A  e.  Fin  /\ 
 A. x  e.  A  B  e.  dom  card )  -> 
 X_ x  e.  A  B  e.  dom  card )
 
Theoremfin2solem 33395* Lemma for fin2so 33396. (Contributed by Brendan Leahy, 29-Jun-2019.)
 |-  (
 ( R  Or  x  /\  ( y  e.  x  /\  z  e.  x ) )  ->  ( y R z  ->  { w  e.  x  |  w R y } [ C.]  { w  e.  x  |  w R z } )
 )
 
Theoremfin2so 33396 Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.)
 |-  (
 ( A  e. FinII  /\  R  Or  A )  ->  A  e.  Fin )
 
Theoremltflcei 33397 Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  A  <  -u ( |_ `  -u B ) ) )
 
Theoremleceifl 33398 Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( |_ `  -u A )  <_  B  <->  A  <_  ( |_ `  B ) ) )
 
Theoremsin2h 33399 Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
 |-  ( A  e.  ( 0 [,] ( 2  x.  pi ) )  ->  ( sin `  ( A  /  2
 ) )  =  ( sqr `  ( (
 1  -  ( cos `  A ) )  / 
 2 ) ) )
 
Theoremcos2h 33400 Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
 |-  ( A  e.  ( -u pi [,] pi )  ->  ( cos `  ( A  / 
 2 ) )  =  ( sqr `  (
 ( 1  +  ( cos `  A ) ) 
 /  2 ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >