Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-equsalcom Structured version   Visualization version   Unicode version

Theorem wl-equsalcom 33328
Description: This simple equivalence eases substitution of one expression for the other. (Contributed by Wolf Lammen, 1-Sep-2018.)
Assertion
Ref Expression
wl-equsalcom  |-  ( A. x ( x  =  y  ->  ph )  <->  A. x
( y  =  x  ->  ph ) )

Proof of Theorem wl-equsalcom
StepHypRef Expression
1 equcom 1945 . . 3  |-  ( x  =  y  <->  y  =  x )
21imbi1i 339 . 2  |-  ( ( x  =  y  ->  ph )  <->  ( y  =  x  ->  ph ) )
32albii 1747 1  |-  ( A. x ( x  =  y  ->  ph )  <->  A. x
( y  =  x  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  wl-equsal1i  33329
  Copyright terms: Public domain W3C validator