Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8t Structured version   Visualization version   Unicode version

Theorem wl-sb8t 33333
Description: Substitution of variable in universal quantifier. Closed form of sb8 2424. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb8t  |-  ( A. x F/ y ph  ->  ( A. x ph  <->  A. y [ y  /  x ] ph ) )

Proof of Theorem wl-sb8t
StepHypRef Expression
1 nfa1 2028 . 2  |-  F/ x A. x F/ y ph
2 nfnf1 2031 . . 3  |-  F/ y F/ y ph
32nfal 2153 . 2  |-  F/ y A. x F/ y
ph
4 sp 2053 . 2  |-  ( A. x F/ y ph  ->  F/ y ph )
5 wl-nfs1t 33324 . . 3  |-  ( F/ y ph  ->  F/ x [ y  /  x ] ph )
65sps 2055 . 2  |-  ( A. x F/ y ph  ->  F/ x [ y  /  x ] ph )
7 sbequ12 2111 . . 3  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
87a1i 11 . 2  |-  ( A. x F/ y ph  ->  ( x  =  y  -> 
( ph  <->  [ y  /  x ] ph ) ) )
91, 3, 4, 6, 8cbv2 2270 1  |-  ( A. x F/ y ph  ->  ( A. x ph  <->  A. y [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  wl-sb8et  33334  wl-sbhbt  33335
  Copyright terms: Public domain W3C validator