MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkdlem4 Structured version   Visualization version   Unicode version

Theorem wlkdlem4 26582
Description: Lemma 4 for wlkd 26583. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.)
Hypotheses
Ref Expression
wlkd.p  |-  ( ph  ->  P  e. Word  _V )
wlkd.f  |-  ( ph  ->  F  e. Word  _V )
wlkd.l  |-  ( ph  ->  ( # `  P
)  =  ( (
# `  F )  +  1 ) )
wlkd.e  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
wlkd.n  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
Assertion
Ref Expression
wlkdlem4  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
Distinct variable groups:    k, F    P, k    k, I    ph, k

Proof of Theorem wlkdlem4
StepHypRef Expression
1 wlkd.e . 2  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
2 wlkd.n . 2  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
3 r19.26 3064 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) )  /\  ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )  <->  ( A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
)  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( P `  k )  =/=  ( P `  ( k  +  1 ) ) ) )
4 df-ne 2795 . . . . . 6  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  <->  -.  ( P `  k )  =  ( P `  ( k  +  1 ) ) )
5 ifpfal 1024 . . . . . 6  |-  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  -> 
(if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
64, 5sylbi 207 . . . . 5  |-  ( ( P `  k )  =/=  ( P `  ( k  +  1 ) )  ->  (if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
76biimparc 504 . . . 4  |-  ( ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) )  /\  ( P `  k )  =/=  ( P `  (
k  +  1 ) ) )  -> if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
87ralimi 2952 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) )  /\  ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )  ->  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
93, 8sylbir 225 . 2  |-  ( ( A. k  e.  ( 0..^ ( # `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
)  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( P `  k )  =/=  ( P `  ( k  +  1 ) ) )  ->  A. k  e.  (
0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
101, 2, 9syl2anc 693 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939  ..^cfzo 12465   #chash 13117  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-ne 2795  df-ral 2917
This theorem is referenced by:  wlkd  26583
  Copyright terms: Public domain W3C validator