| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkdlem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma 4 for wlkd 26583. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkd.p |
|
| wlkd.f |
|
| wlkd.l |
|
| wlkd.e |
|
| wlkd.n |
|
| Ref | Expression |
|---|---|
| wlkdlem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.e |
. 2
| |
| 2 | wlkd.n |
. 2
| |
| 3 | r19.26 3064 |
. . 3
| |
| 4 | df-ne 2795 |
. . . . . 6
| |
| 5 | ifpfal 1024 |
. . . . . 6
| |
| 6 | 4, 5 | sylbi 207 |
. . . . 5
|
| 7 | 6 | biimparc 504 |
. . . 4
|
| 8 | 7 | ralimi 2952 |
. . 3
|
| 9 | 3, 8 | sylbir 225 |
. 2
|
| 10 | 1, 2, 9 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-ne 2795 df-ral 2917 |
| This theorem is referenced by: wlkd 26583 |
| Copyright terms: Public domain | W3C validator |