MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrepclf Structured version   Visualization version   Unicode version

Theorem zfrepclf 4777
Description: An inference rule based on the Axiom of Replacement. Typically,  ph defines a function from  x to  y. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
zfrepclf.1  |-  F/_ x A
zfrepclf.2  |-  A  e. 
_V
zfrepclf.3  |-  ( x  e.  A  ->  E. z A. y ( ph  ->  y  =  z ) )
Assertion
Ref Expression
zfrepclf  |-  E. z A. y ( y  e.  z  <->  E. x ( x  e.  A  /\  ph ) )
Distinct variable groups:    y, z, A    ph, z    x, y, z
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem zfrepclf
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 zfrepclf.2 . 2  |-  A  e. 
_V
2 zfrepclf.1 . . . . . 6  |-  F/_ x A
32nfeq2 2780 . . . . 5  |-  F/ x  v  =  A
4 eleq2 2690 . . . . . 6  |-  ( v  =  A  ->  (
x  e.  v  <->  x  e.  A ) )
5 zfrepclf.3 . . . . . 6  |-  ( x  e.  A  ->  E. z A. y ( ph  ->  y  =  z ) )
64, 5syl6bi 243 . . . . 5  |-  ( v  =  A  ->  (
x  e.  v  ->  E. z A. y (
ph  ->  y  =  z ) ) )
73, 6alrimi 2082 . . . 4  |-  ( v  =  A  ->  A. x
( x  e.  v  ->  E. z A. y
( ph  ->  y  =  z ) ) )
8 nfv 1843 . . . . 5  |-  F/ z
ph
98axrep5 4776 . . . 4  |-  ( A. x ( x  e.  v  ->  E. z A. y ( ph  ->  y  =  z ) )  ->  E. z A. y
( y  e.  z  <->  E. x ( x  e.  v  /\  ph )
) )
107, 9syl 17 . . 3  |-  ( v  =  A  ->  E. z A. y ( y  e.  z  <->  E. x ( x  e.  v  /\  ph ) ) )
114anbi1d 741 . . . . . . 7  |-  ( v  =  A  ->  (
( x  e.  v  /\  ph )  <->  ( x  e.  A  /\  ph )
) )
123, 11exbid 2091 . . . . . 6  |-  ( v  =  A  ->  ( E. x ( x  e.  v  /\  ph )  <->  E. x ( x  e.  A  /\  ph )
) )
1312bibi2d 332 . . . . 5  |-  ( v  =  A  ->  (
( y  e.  z  <->  E. x ( x  e.  v  /\  ph )
)  <->  ( y  e.  z  <->  E. x ( x  e.  A  /\  ph ) ) ) )
1413albidv 1849 . . . 4  |-  ( v  =  A  ->  ( A. y ( y  e.  z  <->  E. x ( x  e.  v  /\  ph ) )  <->  A. y
( y  e.  z  <->  E. x ( x  e.  A  /\  ph )
) ) )
1514exbidv 1850 . . 3  |-  ( v  =  A  ->  ( E. z A. y ( y  e.  z  <->  E. x
( x  e.  v  /\  ph ) )  <->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  A  /\  ph ) ) ) )
1610, 15mpbid 222 . 2  |-  ( v  =  A  ->  E. z A. y ( y  e.  z  <->  E. x ( x  e.  A  /\  ph ) ) )
171, 16vtocle 3282 1  |-  E. z A. y ( y  e.  z  <->  E. x ( x  e.  A  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by:  zfrep3cl  4778  zfrep4  4779
  Copyright terms: Public domain W3C validator