| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0npi | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0npi | ⊢ ¬ ∅ ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 | . 2 ⊢ ∅ = ∅ | |
| 2 | elni 9698 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
| 3 | 2 | simprbi 480 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
| 4 | 3 | necon2bi 2824 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 ωcom 7065 Ncnpi 9666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-sn 4178 df-ni 9694 |
| This theorem is referenced by: addasspi 9717 mulasspi 9719 distrpi 9720 addcanpi 9721 mulcanpi 9722 addnidpi 9723 ltapi 9725 ltmpi 9726 ordpipq 9764 |
| Copyright terms: Public domain | W3C validator |