MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Structured version   Visualization version   GIF version

Theorem distrpi 9720
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 9700 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 9700 . . . 4 (𝐵N𝐵 ∈ ω)
3 pinn 9700 . . . 4 (𝐶N𝐶 ∈ ω)
4 nndi 7703 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
51, 2, 3, 4syl3an 1368 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
6 addclpi 9714 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
7 mulpiord 9707 . . . . . 6 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +N 𝐶)))
86, 7sylan2 491 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +N 𝐶)))
9 addpiord 9706 . . . . . . 7 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +𝑜 𝐶))
109oveq2d 6666 . . . . . 6 ((𝐵N𝐶N) → (𝐴 ·𝑜 (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
1110adantl 482 . . . . 5 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·𝑜 (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
128, 11eqtrd 2656 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
13123impb 1260 . . 3 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
14 mulclpi 9715 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
15 mulclpi 9715 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
16 addpiord 9706 . . . . . 6 (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)))
1714, 15, 16syl2an 494 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)))
18 mulpiord 9707 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵))
19 mulpiord 9707 . . . . . 6 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·𝑜 𝐶))
2018, 19oveqan12d 6669 . . . . 5 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +𝑜 (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
2117, 20eqtrd 2656 . . . 4 (((𝐴N𝐵N) ∧ (𝐴N𝐶N)) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
22213impdi 1381 . . 3 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
235, 13, 223eqtr4d 2666 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
24 dmaddpi 9712 . . 3 dom +N = (N × N)
25 0npi 9704 . . 3 ¬ ∅ ∈ N
26 dmmulpi 9713 . . 3 dom ·N = (N × N)
2724, 25, 26ndmovdistr 6823 . 2 (¬ (𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)))
2823, 27pm2.61i 176 1 (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1037   = wceq 1483  wcel 1990  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557   ·𝑜 comu 7558  Ncnpi 9666   +N cpli 9667   ·N cmi 9668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-ni 9694  df-pli 9695  df-mi 9696
This theorem is referenced by:  adderpqlem  9776  addassnq  9780  distrnq  9783  ltanq  9793  ltexnq  9797
  Copyright terms: Public domain W3C validator