| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21t | Structured version Visualization version GIF version | ||
| Description: Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2075. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1710 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.) |
| Ref | Expression |
|---|---|
| 19.21t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.38a 1767 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | |
| 2 | 19.9t 2071 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 2 | imbi1d 331 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| 4 | 1, 3 | bitr3d 270 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: 19.21 2075 stdpc5OLD 2077 19.23t 2079 sbal1 2460 sbal2 2461 r19.21t 2955 ceqsalt 3228 sbciegft 3466 bj-ceqsalt0 32873 bj-ceqsalt1 32874 wl-sbhbt 33335 wl-2sb6d 33341 wl-sbalnae 33345 ax12indalem 34230 ax12inda2ALT 34231 |
| Copyright terms: Public domain | W3C validator |