| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.9t | Structured version Visualization version GIF version | ||
| Description: A closed version of 19.9 2072. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) (Proof shortened by Wolf Lammen, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.9t | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 2 | 1 | 19.9d 2070 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| 3 | 19.8a 2052 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 4 | 2, 3 | impbid1 215 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: 19.9 2072 19.21t 2073 19.21tOLDOLD 2074 spimt 2253 sbft 2379 vtoclegft 3280 bj-cbv3tb 32711 bj-spimtv 32718 bj-sbftv 32763 bj-equsal1t 32809 bj-19.21t 32817 19.9alt 34252 |
| Copyright terms: Public domain | W3C validator |