| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of 19.23 2080 as of 6-Oct-2021. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.23OLD.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.23OLD | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23OLD.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 19.23tOLD 2218 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 ℲwnfOLD 1709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 df-nfOLD 1721 |
| This theorem is referenced by: 19.23hOLD 2220 exlimiOLD 2221 |
| Copyright terms: Public domain | W3C validator |