| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.23 of [Margaris] p. 90. See 19.23v 1902 for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| 19.23.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.23 | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 19.23t 2079 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: exlimi 2086 equsalv 2108 nf5 2116 19.23h 2122 pm11.53 2179 equsal 2291 2sb6rf 2452 r19.3rz 4062 ralidm 4075 ssrelf 29425 bj-biexal1 32696 bj-biexex 32700 axc11n-16 34223 axc11next 38607 |
| Copyright terms: Public domain | W3C validator |