| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.3 | Structured version Visualization version GIF version | ||
| Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1897 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| 19.3.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.3 | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | 19.3.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nf5ri 2065 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 4 | 1, 3 | impbii 199 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: 19.16 2093 19.17 2094 19.27 2095 19.28 2096 19.37 2100 axrep4 4775 zfcndrep 9436 bj-alexbiex 32690 bj-alalbial 32692 bj-axrep4 32791 |
| Copyright terms: Public domain | W3C validator |