MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem1 Structured version   Visualization version   GIF version

Theorem 2reu5lem1 3413
Description: Lemma for 2reu5 3416. Note that ∃!𝑥𝐴∃!𝑦𝐵𝜑 does not mean "there is exactly one 𝑥 in 𝐴 and exactly one 𝑦 in 𝐵 such that 𝜑 holds;" see comment for 2eu5 2557. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem1 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reu5lem1
StepHypRef Expression
1 df-reu 2919 . . 3 (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦(𝑦𝐵𝜑))
21reubii 3128 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑))
3 df-reu 2919 . . 3 (∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑) ↔ ∃!𝑥(𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)))
4 euanv 2534 . . . . . 6 (∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)))
54bicomi 214 . . . . 5 ((𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
6 3anass 1042 . . . . . . 7 ((𝑥𝐴𝑦𝐵𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
76bicomi 214 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴𝑦𝐵𝜑))
87eubii 2492 . . . . 5 (∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
95, 8bitri 264 . . . 4 ((𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
109eubii 2492 . . 3 (∃!𝑥(𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
113, 10bitri 264 . 2 (∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑) ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
122, 11bitri 264 1 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037  wcel 1990  ∃!weu 2470  ∃!wreu 2914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-reu 2919
This theorem is referenced by:  2reu5lem3  3415
  Copyright terms: Public domain W3C validator