| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reu5lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 2reu5 3416. Note that |
| Ref | Expression |
|---|---|
| 2reu5lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2919 |
. . 3
| |
| 2 | 1 | reubii 3128 |
. 2
|
| 3 | df-reu 2919 |
. . 3
| |
| 4 | euanv 2534 |
. . . . . 6
| |
| 5 | 4 | bicomi 214 |
. . . . 5
|
| 6 | 3anass 1042 |
. . . . . . 7
| |
| 7 | 6 | bicomi 214 |
. . . . . 6
|
| 8 | 7 | eubii 2492 |
. . . . 5
|
| 9 | 5, 8 | bitri 264 |
. . . 4
|
| 10 | 9 | eubii 2492 |
. . 3
|
| 11 | 3, 10 | bitri 264 |
. 2
|
| 12 | 2, 11 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-reu 2919 |
| This theorem is referenced by: 2reu5lem3 3415 |
| Copyright terms: Public domain | W3C validator |