![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 400 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | 3orass 1040 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | sylibr 224 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∨ w3o 1036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
This theorem is referenced by: 3mix2 1231 3mix3 1232 3mix1i 1233 3mix1d 1236 3jaob 1390 tppreqb 4336 onzsl 7046 sornom 9099 fpwwe2lem13 9464 nn0le2is012 11441 hashv01gt1 13133 hash1to3 13273 cshwshashlem1 15802 zabsle1 25021 colinearalg 25790 frgrregorufr0 27188 sltsolem1 31826 nosep1o 31832 frege129d 38055 |
Copyright terms: Public domain | W3C validator |