MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1 Structured version   Visualization version   GIF version

Theorem 3mix1 1230
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1 (𝜑 → (𝜑𝜓𝜒))

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 400 . 2 (𝜑 → (𝜑 ∨ (𝜓𝜒)))
2 3orass 1040 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2sylibr 224 1 (𝜑 → (𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  w3o 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-3or 1038
This theorem is referenced by:  3mix2  1231  3mix3  1232  3mix1i  1233  3mix1d  1236  3jaob  1390  tppreqb  4336  onzsl  7046  sornom  9099  fpwwe2lem13  9464  nn0le2is012  11441  hashv01gt1  13133  hash1to3  13273  cshwshashlem1  15802  zabsle1  25021  colinearalg  25790  frgrregorufr0  27188  sltsolem1  31826  nosep1o  31832  frege129d  38055
  Copyright terms: Public domain W3C validator