| Step | Hyp | Ref
| Expression |
| 1 | | frgrregorufr0.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | frgrregorufr0.d |
. . 3
⊢ 𝐷 = (VtxDeg‘𝐺) |
| 3 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐷‘𝑥) = (𝐷‘𝑦)) |
| 4 | 3 | eqeq1d 2624 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑦) = 𝐾)) |
| 5 | 4 | cbvrabv 3199 |
. . 3
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = {𝑦 ∈ 𝑉 ∣ (𝐷‘𝑦) = 𝐾} |
| 6 | | eqid 2622 |
. . 3
⊢ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
| 7 | 1, 2, 5, 6 | frgrwopreg 27187 |
. 2
⊢ (𝐺 ∈ FriendGraph →
(((#‘{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) ∨ ((#‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅))) |
| 8 | | frgrregorufr0.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
| 9 | 1, 2, 5, 6, 8 | frgrwopreg1 27182 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧
(#‘{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
| 10 | 9 | 3mix3d 1238 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧
(#‘{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
| 11 | 10 | expcom 451 |
. . . 4
⊢
((#‘{𝑥 ∈
𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 12 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝐷‘𝑥) = (𝐷‘𝑣)) |
| 13 | 12 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ((𝐷‘𝑥) = 𝐾 ↔ (𝐷‘𝑣) = 𝐾)) |
| 14 | 13 | cbvrabv 3199 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} |
| 15 | 14 | eqeq1i 2627 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ ↔ {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} = ∅) |
| 16 | | rabeq0 3957 |
. . . . . 6
⊢ ({𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ (𝐷‘𝑣) = 𝐾) |
| 17 | 15, 16 | bitri 264 |
. . . . 5
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ (𝐷‘𝑣) = 𝐾) |
| 18 | | neqne 2802 |
. . . . . . . 8
⊢ (¬
(𝐷‘𝑣) = 𝐾 → (𝐷‘𝑣) ≠ 𝐾) |
| 19 | 18 | ralimi 2952 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) |
| 20 | 19 | 3mix2d 1237 |
. . . . . 6
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
| 21 | 20 | a1d 25 |
. . . . 5
⊢
(∀𝑣 ∈
𝑉 ¬ (𝐷‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 22 | 17, 21 | sylbi 207 |
. . . 4
⊢ ({𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 23 | 11, 22 | jaoi 394 |
. . 3
⊢
(((#‘{𝑥 ∈
𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 24 | 1, 2, 5, 6, 8 | frgrwopreg2 27183 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧
(#‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
| 25 | 24 | 3mix3d 1238 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧
(#‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1) → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
| 26 | 25 | expcom 451 |
. . . 4
⊢
((#‘(𝑉 ∖
{𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 27 | | difrab0eq 4038 |
. . . . 5
⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) |
| 28 | 14 | eqeq2i 2634 |
. . . . . . 7
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ↔ 𝑉 = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾}) |
| 29 | | rabid2 3118 |
. . . . . . 7
⊢ (𝑉 = {𝑣 ∈ 𝑉 ∣ (𝐷‘𝑣) = 𝐾} ↔ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) |
| 30 | 28, 29 | bitri 264 |
. . . . . 6
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} ↔ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) |
| 31 | | 3mix1 1230 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
| 32 | 31 | a1d 25 |
. . . . . 6
⊢
(∀𝑣 ∈
𝑉 (𝐷‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 33 | 30, 32 | sylbi 207 |
. . . . 5
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 34 | 27, 33 | sylbi 207 |
. . . 4
⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅ → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 35 | 26, 34 | jaoi 394 |
. . 3
⊢
(((#‘(𝑉
∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 36 | 23, 35 | jaoi 394 |
. 2
⊢
((((#‘{𝑥
∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = 1 ∨ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} = ∅) ∨ ((#‘(𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾})) = 1 ∨ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾}) = ∅)) → (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 37 | 7, 36 | mpcom 38 |
1
⊢ (𝐺 ∈ FriendGraph →
(∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |