![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashv01gt1 | Structured version Visualization version GIF version |
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
Ref | Expression |
---|---|
hashv01gt1 | ⊢ (𝑀 ∈ 𝑉 → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 13130 | . 2 ⊢ (𝑀 ∈ 𝑉 → ((#‘𝑀) ∈ ℕ0 ∨ (#‘𝑀) = +∞)) | |
2 | elnn0 11294 | . . . 4 ⊢ ((#‘𝑀) ∈ ℕ0 ↔ ((#‘𝑀) ∈ ℕ ∨ (#‘𝑀) = 0)) | |
3 | exmidne 2804 | . . . . . . . 8 ⊢ ((#‘𝑀) = 1 ∨ (#‘𝑀) ≠ 1) | |
4 | nngt1ne1 11047 | . . . . . . . . 9 ⊢ ((#‘𝑀) ∈ ℕ → (1 < (#‘𝑀) ↔ (#‘𝑀) ≠ 1)) | |
5 | 4 | orbi2d 738 | . . . . . . . 8 ⊢ ((#‘𝑀) ∈ ℕ → (((#‘𝑀) = 1 ∨ 1 < (#‘𝑀)) ↔ ((#‘𝑀) = 1 ∨ (#‘𝑀) ≠ 1))) |
6 | 3, 5 | mpbiri 248 | . . . . . . 7 ⊢ ((#‘𝑀) ∈ ℕ → ((#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
7 | 6 | olcd 408 | . . . . . 6 ⊢ ((#‘𝑀) ∈ ℕ → ((#‘𝑀) = 0 ∨ ((#‘𝑀) = 1 ∨ 1 < (#‘𝑀)))) |
8 | 3orass 1040 | . . . . . 6 ⊢ (((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀)) ↔ ((#‘𝑀) = 0 ∨ ((#‘𝑀) = 1 ∨ 1 < (#‘𝑀)))) | |
9 | 7, 8 | sylibr 224 | . . . . 5 ⊢ ((#‘𝑀) ∈ ℕ → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
10 | 3mix1 1230 | . . . . 5 ⊢ ((#‘𝑀) = 0 → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) | |
11 | 9, 10 | jaoi 394 | . . . 4 ⊢ (((#‘𝑀) ∈ ℕ ∨ (#‘𝑀) = 0) → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
12 | 2, 11 | sylbi 207 | . . 3 ⊢ ((#‘𝑀) ∈ ℕ0 → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
13 | 1re 10039 | . . . . . 6 ⊢ 1 ∈ ℝ | |
14 | ltpnf 11954 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
16 | breq2 4657 | . . . . 5 ⊢ ((#‘𝑀) = +∞ → (1 < (#‘𝑀) ↔ 1 < +∞)) | |
17 | 15, 16 | mpbiri 248 | . . . 4 ⊢ ((#‘𝑀) = +∞ → 1 < (#‘𝑀)) |
18 | 17 | 3mix3d 1238 | . . 3 ⊢ ((#‘𝑀) = +∞ → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
19 | 12, 18 | jaoi 394 | . 2 ⊢ (((#‘𝑀) ∈ ℕ0 ∨ (#‘𝑀) = +∞) → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((#‘𝑀) = 0 ∨ (#‘𝑀) = 1 ∨ 1 < (#‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∨ w3o 1036 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 ℝcr 9935 0cc0 9936 1c1 9937 +∞cpnf 10071 < clt 10074 ℕcn 11020 ℕ0cn0 11292 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-hash 13118 |
This theorem is referenced by: hashge2el2difr 13263 01eq0ring 19272 tgldimor 25397 frgrwopreg 27187 |
Copyright terms: Public domain | W3C validator |