![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab0 | Structured version Visualization version GIF version |
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 3954 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2795). (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
ab0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2766 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | eq0f 3925 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2610 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | notbii 310 | . . 3 ⊢ (¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
5 | 4 | albii 1747 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ¬ 𝜑) |
6 | 2, 5 | bitri 264 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: dfnf5 3952 rab0 3955 rabeq0 3957 abf 3978 |
Copyright terms: Public domain | W3C validator |