MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   Unicode version

Theorem ab0 3951
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 3954 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2795). (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
ab0  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )

Proof of Theorem ab0
StepHypRef Expression
1 nfab1 2766 . . 3  |-  F/_ x { x  |  ph }
21eq0f 3925 . 2  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  x  e.  { x  |  ph } )
3 abid 2610 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
43notbii 310 . . 3  |-  ( -.  x  e.  { x  |  ph }  <->  -.  ph )
54albii 1747 . 2  |-  ( A. x  -.  x  e.  {
x  |  ph }  <->  A. x  -.  ph )
62, 5bitri 264 1  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  dfnf5  3952  rab0  3955  rabeq0  3957  abf  3978
  Copyright terms: Public domain W3C validator