| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant245 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| ad5ant245.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| ad5ant245 | ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant245.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1264 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | a1i13 27 | . . 3 ⊢ (𝜏 → (𝜑 → (𝜂 → (𝜓 → (𝜒 → 𝜃))))) |
| 4 | 3 | imp 445 | . 2 ⊢ ((𝜏 ∧ 𝜑) → (𝜂 → (𝜓 → (𝜒 → 𝜃)))) |
| 5 | 4 | imp41 619 | 1 ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: 2pthnloop 26627 matunitlindflem1 33405 nnfoctbdjlem 40672 sfprmdvdsmersenne 41520 |
| Copyright terms: Public domain | W3C validator |