| Step | Hyp | Ref
| Expression |
| 1 | | isfld 18756 |
. . . . 5
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| 2 | 1 | simplbi 476 |
. . . 4
⊢ (𝑅 ∈ Field → 𝑅 ∈
DivRing) |
| 3 | | drngring 18754 |
. . . 4
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝑅 ∈ Field → 𝑅 ∈ Ring) |
| 5 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
| 6 | 5 | frlmlmod 20093 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝑅 freeLMod 𝐼) ∈ LMod) |
| 7 | 6 | adantlr 751 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(𝑅 freeLMod 𝐼) ∈ LMod) |
| 8 | | simpr 477 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
𝐼 ∈ (Fin ∖
{∅})) |
| 9 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ 𝐼 ∈
Fin) |
| 10 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 11 | 5, 10 | frlmfibas 20105 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼))) |
| 12 | 9, 11 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((Base‘𝑅)
↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼))) |
| 13 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
| 14 | | curf 33387 |
. . . . . . . . . 10
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧
(Base‘𝑅) ∈ V)
→ curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚
𝐼)) |
| 15 | 13, 14 | mp3an3 1413 |
. . . . . . . . 9
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼)) |
| 16 | | feq3 6028 |
. . . . . . . . . 10
⊢
(((Base‘𝑅)
↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))) |
| 17 | 16 | biimpa 501 |
. . . . . . . . 9
⊢
((((Base‘𝑅)
↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 18 | 12, 15, 17 | syl2an 494 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) →
curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 19 | 18 | anandirs 874 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 20 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
| 21 | | eqid 2622 |
. . . . . . . 8
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) |
| 22 | | eqid 2622 |
. . . . . . . 8
⊢ (
·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠
‘(𝑅 freeLMod 𝐼)) |
| 23 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼)) |
| 24 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) |
| 25 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) |
| 26 | 20, 21, 22, 23, 24, 25 | islindf4 20177 |
. . . . . . 7
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry
𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 27 | 7, 8, 19, 26 | syl3anc 1326 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 28 | 5 | frlmsca 20097 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ 𝑅 =
(Scalar‘(𝑅 freeLMod
𝐼))) |
| 29 | 28 | oveq1d 6665 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝑅 freeLMod 𝐼) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (Base‘(𝑅
freeLMod 𝐼)) =
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 31 | 12, 30 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((Base‘𝑅)
↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 32 | 31 | adantlr 751 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
((Base‘𝑅)
↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 33 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼) → 𝑓:𝐼⟶(Base‘𝑅)) |
| 34 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼) |
| 35 | 34 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼) |
| 36 | 19 | ffnd 6046 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀 Fn 𝐼) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼) |
| 38 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖
{∅})) |
| 39 | | inidm 3822 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 40 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
| 41 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) = (curry 𝑀‘𝑛)) |
| 42 | 35, 37, 38, 38, 39, 40, 41 | offval 6904 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)))) |
| 43 | | simpllr 799 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → 𝐼 ∈ (Fin ∖
{∅})) |
| 44 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 45 | 44 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 46 | 19 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 47 | 46 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 49 | 5, 20, 10, 43, 45, 47, 22, 48 | frlmvscafval 20109 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)) = ((𝐼 × {(𝑓‘𝑛)}) ∘𝑓
(.r‘𝑅)(curry 𝑀‘𝑛))) |
| 50 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑛) ∈ V |
| 51 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑛) ∈ V → (𝐼 × {(𝑓‘𝑛)}) Fn 𝐼) |
| 52 | 50, 51 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝐼 × {(𝑓‘𝑛)}) Fn 𝐼) |
| 53 | 15 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼)) |
| 54 | | elmapfn 7880 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((curry
𝑀‘𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 56 | 55 | adantlll 754 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 57 | 56 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 58 | 50 | fvconst2 6469 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝐼 → ((𝐼 × {(𝑓‘𝑛)})‘𝑘) = (𝑓‘𝑛)) |
| 59 | 58 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝐼 × {(𝑓‘𝑛)})‘𝑘) = (𝑓‘𝑛)) |
| 60 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼)) |
| 61 | 60 | anim2i 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ (Fin ∖ {∅})
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼))) |
| 62 | 61 | ancoms 469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(𝐼 ∈ (Fin ∖
{∅}) ∧ 𝑀 Fn
(𝐼 × 𝐼))) |
| 63 | 62 | ad4ant23 1297 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼))) |
| 64 | | curfv 33389 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 65 | 64 | 3exp1 1283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 Fn (𝐼 × 𝐼) → (𝑛 ∈ 𝐼 → (𝑘 ∈ 𝐼 → (𝐼 ∈ (Fin ∖ {∅}) →
((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘))))) |
| 66 | 65 | com4r 94 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑀 Fn (𝐼 × 𝐼) → (𝑛 ∈ 𝐼 → (𝑘 ∈ 𝐼 → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘))))) |
| 67 | 66 | imp41 619 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 68 | 63, 67 | sylanl1 682 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 69 | 52, 57, 43, 43, 39, 59, 68 | offval 6904 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝐼 × {(𝑓‘𝑛)}) ∘𝑓
(.r‘𝑅)(curry 𝑀‘𝑛)) = (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 70 | 49, 69 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)) = (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 71 | 70 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛))) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 72 | 42, 71 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 73 | 72 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 74 | | simplll 798 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring) |
| 75 | | simp-4l 806 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 76 | 44 | ad4ant23 1297 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 77 | | fovrn 6804 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 78 | 77 | ad5ant245 1307 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 79 | 10, 48 | ringcl 18561 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑓‘𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 80 | 75, 76, 78, 79 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 81 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) |
| 82 | 80, 81 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)) |
| 83 | 82 | adantllr 755 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)) |
| 84 | | elmapg 7870 |
. . . . . . . . . . . . . . . . 17
⊢
(((Base‘𝑅)
∈ V ∧ 𝐼 ∈
(Fin ∖ {∅})) → ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 85 | 13, 84 | mpan 706 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 86 | 85 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 87 | 12 | eleq2d 2687 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 88 | 86, 87 | bitr3d 270 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 89 | 88 | ad5ant13 1301 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 90 | 83, 89 | mpbid 222 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 91 | | mptexg 6484 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V) |
| 92 | 91 | ralrimivw 2967 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ ∀𝑛 ∈
𝐼 (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V) |
| 93 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 94 | 93 | fnmpt 6020 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
𝐼 (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 95 | 92, 94 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 96 | | fvexd 6203 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (0g‘(𝑅 freeLMod 𝐼)) ∈ V) |
| 97 | 95, 9, 96 | fndmfifsupp 8288 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
| 98 | 97 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
| 99 | 5, 20, 23, 38, 38, 74, 90, 98 | frlmgsum 20111 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 100 | 73, 99 | eqtr2d 2657 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
| 101 | 33, 100 | sylan2 491 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)) → (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
| 102 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 103 | 5, 102 | frlm0 20098 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝐼 ×
{(0g‘𝑅)})
= (0g‘(𝑅
freeLMod 𝐼))) |
| 104 | 103 | ad4ant13 1292 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)) → (𝐼 ×
{(0g‘𝑅)})
= (0g‘(𝑅
freeLMod 𝐼))) |
| 105 | 101, 104 | eqeq12d 2637 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)) → ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)))) |
| 106 | 28 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (0g‘𝑅) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
| 107 | 106 | sneqd 4189 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ {(0g‘𝑅)} =
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) |
| 108 | 107 | xpeq2d 5139 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝐼 ×
{(0g‘𝑅)})
= (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) |
| 109 | 108 | eqeq2d 2632 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝑓 = (𝐼 ×
{(0g‘𝑅)})
↔ 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))) |
| 110 | 109 | ad4ant13 1292 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)) → (𝑓 = (𝐼 × {(0g‘𝑅)}) ↔ 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))) |
| 111 | 105, 110 | imbi12d 334 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 112 | 32, 111 | raleqbidva 3154 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(∀𝑓 ∈
((Base‘𝑅)
↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ ∀𝑓 ∈
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘𝑓 (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 113 | 27, 112 | bitr4d 271 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 114 | 113 | notbid 308 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 115 | | rexanali 2998 |
. . . 4
⊢
(∃𝑓 ∈
((Base‘𝑅)
↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)}))) |
| 116 | 114, 115 | syl6bbr 278 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 117 | 4, 116 | sylanl1 682 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 118 | | fconstfv 6476 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐼⟶{(0g‘𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅))) |
| 119 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) ∈ V |
| 120 | 119 | fconst2 6470 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐼⟶{(0g‘𝑅)} ↔ 𝑓 = (𝐼 × {(0g‘𝑅)})) |
| 121 | 118, 120 | sylbb1 227 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝐼 ∧ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) → 𝑓 = (𝐼 × {(0g‘𝑅)})) |
| 122 | 121 | ex 450 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝐼 → (∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅) → 𝑓 = (𝐼 × {(0g‘𝑅)}))) |
| 123 | 122 | con3d 148 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅))) |
| 124 | | df-ne 2795 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ¬ (𝑓‘𝑖) = (0g‘𝑅)) |
| 125 | 124 | rexbii 3041 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ∃𝑖 ∈ 𝐼 ¬ (𝑓‘𝑖) = (0g‘𝑅)) |
| 126 | | rexnal 2995 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐼 ¬ (𝑓‘𝑖) = (0g‘𝑅) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) |
| 127 | 125, 126 | bitri 264 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) |
| 128 | 123, 127 | syl6ibr 242 |
. . . . . . . 8
⊢ (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 129 | 34, 128 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 130 | 129 | adantl 482 |
. . . . . 6
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 131 | | neldifsn 4321 |
. . . . . . . . . . 11
⊢ ¬
𝑖 ∈ (𝐼 ∖ {𝑖}) |
| 132 | | difss 3737 |
. . . . . . . . . . 11
⊢ (𝐼 ∖ {𝑖}) ⊆ 𝐼 |
| 133 | | diffi 8192 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin) |
| 134 | 133 | ad4antlr 769 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin) |
| 135 | | eleq2 2690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ∅ → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ ∅)) |
| 136 | 135 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ ∅)) |
| 137 | | sseq1 3626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (𝑦 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
| 138 | 136, 137 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))) |
| 139 | 138 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))) |
| 140 | | mpteq1 4737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = ∅ → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 141 | | mpt0 6021 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ∅ ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = ∅ |
| 142 | 140, 141 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = ∅) |
| 143 | 142 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ∅ → (𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg
∅)) |
| 144 | 102 | gsum0 17278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 Σg
∅) = (0g‘𝑅) |
| 145 | 143, 144 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → (𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (0g‘𝑅)) |
| 146 | 145 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → ((𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘))) |
| 147 | 146 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 148 | 147 | mpt2eq3dv 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 149 | 148 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 150 | 149 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 151 | 139, 150 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 152 | | elequ2 2004 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ 𝑥)) |
| 153 | 152 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ 𝑥)) |
| 154 | | sseq1 3626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼)) |
| 155 | 153, 154 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 156 | 155 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)))) |
| 157 | | mpteq1 4737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 158 | 157 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 159 | 158 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 160 | 159 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 161 | 160 | mpt2eq3dv 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 162 | 161 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 163 | 162 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 164 | 156, 163 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 165 | | eleq2 2690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 166 | 165 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 167 | | sseq1 3626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ⊆ 𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 168 | 166, 167 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))) |
| 169 | 168 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))) |
| 170 | | mpteq1 4737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 171 | 170 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 172 | 171 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 173 | 172 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 174 | 173 | mpt2eq3dv 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 175 | 174 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 176 | 175 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 177 | 169, 176 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 178 | | eleq2 2690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ (𝐼 ∖ {𝑖}))) |
| 179 | 178 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖}))) |
| 180 | | sseq1 3626 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦 ⊆ 𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) |
| 181 | 179, 180 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))) |
| 182 | 181 | anbi2d 740 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))) |
| 183 | | mpteq1 4737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 184 | 183 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 185 | 184 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 186 | 185 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 187 | 186 | mpt2eq3dv 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 188 | 187 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 189 | 188 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 190 | 182, 189 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 191 | | fnov 6768 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 192 | 60, 191 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 193 | 192 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 194 | | ringgrp 18552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 195 | 4, 194 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Field → 𝑅 ∈ Grp) |
| 196 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘)) |
| 197 | 196 | equcoms 1947 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘)) |
| 198 | 197 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑖 → ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)) = ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘))) |
| 199 | | simp1l 1085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Grp) |
| 200 | | fovrn 6804 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 201 | 200 | 3adant1l 1318 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 202 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 203 | 10, 202, 102 | grplid 17452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 204 | 199, 201,
203 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 205 | 198, 204 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 = 𝑖) → ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 206 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘)) |
| 207 | 205, 206 | ifeqda 4121 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 208 | 207 | mpt2eq3dva 6719 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 209 | 195, 208 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 210 | 193, 209 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 211 | 210 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 212 | 211 | ad4antr 768 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 213 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ 𝑥 → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 214 | 213 | con3i 150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖 ∈ 𝑥) |
| 215 | | ssun1 3776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
| 216 | | sstr 3611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥 ⊆ 𝐼) |
| 217 | 215, 216 | mpan 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼) |
| 218 | 214, 217 | anim12i 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) |
| 219 | 218 | anim2i 593 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 220 | 219 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 221 | | velsn 4193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧) |
| 222 | | elun2 3781 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 223 | 221, 222 | sylbir 225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑧 → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 224 | 223 | necon3bi 2820 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖 ≠ 𝑧) |
| 225 | 224 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 226 | | ringcmn 18581 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 227 | 4, 226 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑅 ∈ Field → 𝑅 ∈ CMnd) |
| 228 | 227 | ad7antr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 229 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin) |
| 230 | 217 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥 ⊆ 𝐼) |
| 231 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → 𝑥 ∈ Fin) |
| 232 | 229, 230,
231 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin) |
| 233 | 232 | ad5ant13 1301 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑥 ∈ Fin) |
| 234 | 217 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∪ {𝑧}) ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 235 | 234 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 236 | 235 | ad4ant24 1298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 237 | 4 | ad6antr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 238 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing) |
| 239 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 240 | 239 | anim2i 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 241 | 240 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 242 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 243 | 10, 102, 242 | drnginvrcl 18764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 244 | 243 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅)) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 245 | 241, 244 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 246 | 245 | anasss 679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 247 | 238, 246 | sylanl1 682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 248 | 247 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 249 | 44 | ad5ant25 1306 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 250 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 251 | 77 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 252 | 251 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 253 | 250, 252 | sylanl1 682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 254 | 237, 249,
253, 79 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 255 | 10, 48 | ringcl 18561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 256 | 237, 248,
254, 255 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 257 | 256 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 258 | 236, 257 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 259 | 258 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 260 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑧 ∈ V |
| 261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑧 ∈ V) |
| 262 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ¬ 𝑧 ∈ 𝑥) |
| 263 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
| 264 | | sstr 3611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼) |
| 265 | 263, 264 | mpan 706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼) |
| 266 | 260 | snss 4316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ 𝐼 ↔ {𝑧} ⊆ 𝐼) |
| 267 | 265, 266 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑧 ∈ 𝐼) |
| 268 | 267 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧 ∈ 𝐼) |
| 269 | 4 | ad6antr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 270 | 4 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 271 | 247 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 272 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 273 | 272 | ad4ant24 1298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 274 | 10, 48 | ringcl 18561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑧) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 275 | 270, 271,
273, 274 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 276 | 275 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 277 | | fovrn 6804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 278 | 277 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 279 | 250, 278 | sylanl1 682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 280 | 10, 48 | ringcl 18561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 281 | 269, 276,
279, 280 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 282 | 268, 281 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 283 | 282 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 284 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑧 → (𝑓‘𝑛) = (𝑓‘𝑧)) |
| 285 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘)) |
| 286 | 284, 285 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑧 → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) = ((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) |
| 287 | 286 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑧 → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 288 | 247 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 289 | 272 | ad5ant24 1305 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 290 | 10, 48 | ringass 18564 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 291 | 269, 288,
289, 279, 290 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 292 | 291 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 293 | 268, 292 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 294 | 287, 293 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑧) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 295 | 294 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑧) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 296 | 10, 202, 228, 233, 259, 261, 262, 283, 295 | gsumunsnd 18357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 297 | 296 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 298 | | ringabl 18580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
| 299 | 4, 298 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Field → 𝑅 ∈ Abel) |
| 300 | 299 | ad6antr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 301 | 227 | ad6antr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 302 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑥 ∈ V |
| 303 | 302 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑥 ∈ V) |
| 304 | | ssel2 3598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑥 ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 305 | 304, 256 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑥 ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 306 | 305 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 307 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 308 | 306, 307 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅)) |
| 309 | 308 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅)) |
| 310 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V |
| 311 | 310, 307 | fnmpti 6022 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝑥 |
| 312 | 311 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝑥) |
| 313 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (0g‘𝑅) ∈ V) |
| 314 | 312, 231,
313 | fndmfifsupp 8288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 315 | 314 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 316 | 315 | ad5ant14 1302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 317 | 10, 102, 301, 303, 309, 316 | gsumcl 18316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅)) |
| 318 | 217, 317 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅)) |
| 319 | 267, 281 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 320 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 321 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → 𝑖 ∈ 𝐼) |
| 322 | 320, 321 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 323 | 322 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 324 | | fovrn 6804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 325 | 324 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 326 | 323, 325 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 327 | 10, 202, 300, 318, 319, 326 | abl32 18214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 328 | 327 | adantlrl 756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 329 | 328 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 330 | 297, 329 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 331 | 330 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) |
| 332 | 331 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) |
| 333 | 332 | mpt2eq3dva 6719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) |
| 334 | 333 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 335 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅) |
| 336 | 1 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
| 337 | 336 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing) |
| 338 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin) |
| 339 | 195 | ad6antr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Grp) |
| 340 | 322 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 341 | 340, 325 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 342 | 10, 202 | grpcl 17430 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Grp ∧ (𝑅 Σg
(𝑛 ∈ 𝑥 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 343 | 339, 317,
341, 342 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 344 | 230, 343 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 345 | 250, 268 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼)) |
| 346 | 345, 278 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 347 | | simp-5r 809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 348 | 347, 200 | syl3an1 1359 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 349 | 268, 275 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 350 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖 ∈ 𝐼) |
| 351 | 267 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧 ∈ 𝐼) |
| 352 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖 ≠ 𝑧) |
| 353 | 335, 10, 202, 48, 337, 338, 344, 346, 348, 349, 350, 351, 352 | mdetero 20416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 354 | 353 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 355 | 334, 354 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 356 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘)) |
| 357 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘)) |
| 358 | 356, 357 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 359 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 360 | 358, 359 | pm2.61i 176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) |
| 361 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 362 | 360, 361 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 363 | 362 | mpt2eq3ia 6720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 364 | 363 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 365 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 366 | 360, 365 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 367 | 366 | mpt2eq3ia 6720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 368 | 367 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 369 | 355, 364,
368 | 3eqtr3g 2679 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 370 | 225, 369 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 371 | 370 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 372 | 371 | biimprd 238 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 373 | 220, 372 | embantd 59 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 374 | 373 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑧 ∈ 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 375 | 374 | com23 86 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑧 ∈ 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 376 | 375 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 377 | 151, 164,
177, 190, 212, 376 | findcard2s 8201 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 378 | 134, 377 | mpcom 38 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 379 | 131, 132,
378 | mpanr12 721 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 380 | 379 | adantlr 751 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 381 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ 𝐼 = 𝐼 |
| 382 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ×
{(0g‘𝑅)})
= (𝑘 ∈ 𝐼 ↦
(0g‘𝑅)) |
| 383 | 382 | eqeq2i 2634 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅))) |
| 384 | | ovex 6678 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 Σg
(𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V |
| 385 | 384 | rgenw 2924 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑘 ∈
𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V |
| 386 | | mpteqb 6299 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅)) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅))) |
| 387 | 385, 386 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅)) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) |
| 388 | 383, 387 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) |
| 389 | 227 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 390 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ Fin) |
| 391 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 392 | 310, 391 | fnmpti 6022 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼 |
| 393 | 392 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 394 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) |
| 395 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin →
(0g‘𝑅)
∈ V) |
| 396 | 393, 394,
395 | fndmfifsupp 8288 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 397 | 396 | ad4antlr 769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 398 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 399 | 322, 325 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 400 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
| 401 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘)) |
| 402 | 400, 401 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑖 → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) = ((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 403 | 402 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑖 → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 404 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field) |
| 405 | 2, 239 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 406 | 405 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 407 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 408 | 10, 102, 48, 407, 242 | drnginvrl 18766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 409 | 408 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅)) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 410 | 406, 409 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 411 | 410 | anasss 679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 412 | 411 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 413 | 404, 412 | sylanl1 682 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 414 | 413 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 415 | 4 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 416 | 247 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 417 | 239 | ad2ant2lr 784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 418 | 417 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 419 | 10, 48 | ringass 18564 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 420 | 415, 416,
418, 399, 419 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 421 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring) |
| 422 | 421 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 423 | 324 | 3adant1l 1318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 424 | 10, 48, 407 | ringlidm 18571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 425 | 422, 423,
424 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 426 | 425 | ad5ant145 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 427 | 426 | adantlrr 757 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 428 | 414, 420,
427 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘)) |
| 429 | 403, 428 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑖) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘)) |
| 430 | 10, 202, 389, 390, 397, 256, 398, 399, 429 | gsumdifsnd 18360 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 431 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ V |
| 432 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) |
| 433 | 431, 432 | fnmpti 6022 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) Fn 𝐼 |
| 434 | 433 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) Fn 𝐼) |
| 435 | 434, 394,
395 | fndmfifsupp 8288 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) finSupp (0g‘𝑅)) |
| 436 | 435 | ad4antlr 769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) finSupp (0g‘𝑅)) |
| 437 | 10, 102, 202, 48, 415, 390, 416, 254, 436 | gsummulc2 18607 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 438 | 430, 437 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 439 | 438 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 440 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Σg
(𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅))) |
| 441 | 440 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅))) |
| 442 | 4 | ad4antr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑅 ∈ Ring) |
| 443 | 10, 48, 102 | ringrz 18588 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 444 | 442, 247,
443 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 445 | 444 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 446 | 439, 441,
445 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (0g‘𝑅)) |
| 447 | 446 | ifeq1d 4104 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 448 | 447 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 449 | 448 | ralimdva 2962 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 450 | 449 | imp 445 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 451 | 388, 450 | sylan2b 492 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 452 | 451, 381 | jctil 560 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 453 | 452 | ralrimivw 2967 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → ∀𝑗 ∈ 𝐼 (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 454 | | mpt2eq123 6714 |
. . . . . . . . . . . 12
⊢ ((𝐼 = 𝐼 ∧ ∀𝑗 ∈ 𝐼 (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 455 | 381, 453,
454 | sylancr 695 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 456 | 455 | an32s 846 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 457 | 456 | fveq2d 6195 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))))) |
| 458 | 336 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑅 ∈ CRing) |
| 459 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝐼 ∈ Fin) |
| 460 | | simpllr 799 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 461 | 460, 200 | syl3an1 1359 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 462 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑖 ∈ 𝐼) |
| 463 | 335, 10, 102, 458, 459, 461, 462 | mdetr0 20411 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) = (0g‘𝑅)) |
| 464 | 463 | ad4ant14 1293 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) = (0g‘𝑅)) |
| 465 | 380, 457,
464 | 3eqtrd 2660 |
. . . . . . . 8
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅)) |
| 466 | 465 | rexlimdvaa 3032 |
. . . . . . 7
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 467 | 466 | expimpd 629 |
. . . . . 6
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 468 | 130, 467 | sylan2d 499 |
. . . . 5
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 469 | 33, 468 | sylan2 491 |
. . . 4
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 470 | 469 | rexlimdva 3031 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚
𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 471 | 9, 470 | sylan2 491 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(∃𝑓 ∈
((Base‘𝑅)
↑𝑚 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 472 | 117, 471 | sylbid 230 |
1
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |