| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a1i13 | Structured version Visualization version GIF version | ||
| Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| a1i13.1 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
| 3 | 2 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ad4ant24 1298 ad5ant245 1307 seqshft2 12827 seqsplit 12834 filconn 21687 usgr2pth 26660 elwspths2on 26853 frgr3vlem1 27137 3vfriswmgrlem 27141 |
| Copyright terms: Public domain | W3C validator |