| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvvfveq | Structured version Visualization version GIF version | ||
| Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvvfveq | ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvelim 41200 | . . 3 ⊢ ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵) | |
| 2 | 1 | necon2ai 2823 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) ≠ V) |
| 3 | afvnufveq 41227 | . 2 ⊢ ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ‘cfv 5888 '''cafv 41194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-un 3579 df-if 4087 df-fv 5896 df-afv 41197 |
| This theorem is referenced by: afv0fv0 41229 afv0nbfvbi 41231 aovvoveq 41272 |
| Copyright terms: Public domain | W3C validator |