| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nvelim | Structured version Visualization version GIF version | ||
| Description: If a class is the universal class it doesn't belong to any class, generalisation of nvel 4797. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| nvelim | ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvel 4797 | . 2 ⊢ ¬ V ∈ 𝐵 | |
| 2 | eleq1 2689 | . . 3 ⊢ (V = 𝐴 → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 2 | eqcoms 2630 | . 2 ⊢ (𝐴 = V → (V ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 4 | 1, 3 | mtbii 316 | 1 ⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 Vcvv 3200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: afvvdm 41221 afvvfunressn 41223 afvvv 41225 afvvfveq 41228 |
| Copyright terms: Public domain | W3C validator |