| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aibnbaif | Structured version Visualization version GIF version | ||
| Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) |
| Ref | Expression |
|---|---|
| aibnbaif.1 | ⊢ (𝜑 → 𝜓) |
| aibnbaif.2 | ⊢ ¬ 𝜓 |
| Ref | Expression |
|---|---|
| aibnbaif | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aibnbaif.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | aibnbaif.2 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 1, 2 | aibnbna 41073 | . 2 ⊢ ¬ 𝜑 |
| 4 | 3 | bifal 1497 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ⊥wfal 1488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: conimpf 41084 conimpfalt 41085 dandysum2p2e4 41165 |
| Copyright terms: Public domain | W3C validator |