![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aibnbaif | Structured version Visualization version Unicode version |
Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) |
Ref | Expression |
---|---|
aibnbaif.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
aibnbaif.2 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
aibnbaif |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aibnbaif.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | aibnbaif.2 |
. . 3
![]() ![]() ![]() | |
3 | 1, 2 | aibnbna 41073 |
. 2
![]() ![]() ![]() |
4 | 3 | bifal 1497 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
This theorem is referenced by: conimpf 41084 conimpfalt 41085 dandysum2p2e4 41165 |
Copyright terms: Public domain | W3C validator |