| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bifal | Structured version Visualization version GIF version | ||
| Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| bifal.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| bifal | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | fal 1490 | . 2 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | 2false 365 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ⊥wfal 1488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: falantru 1508 ralnralall 4080 tgcgr4 25426 frgrregord013 27253 bj-df-nul 33017 bicontr 33879 aibnbaif 41074 aifftbifffaibif 41088 atnaiana 41090 |
| Copyright terms: Public domain | W3C validator |