Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj956 Structured version   Visualization version   GIF version

Theorem bnj956 30847
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj956.1 (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)
Assertion
Ref Expression
bnj956 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)

Proof of Theorem bnj956
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bnj956.1 . . . 4 (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)
2 eleq2 2690 . . . . . . 7 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
32anbi1d 741 . . . . . 6 (𝐴 = 𝐵 → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑦𝐶)))
43alexbii 1760 . . . . 5 (∀𝑥 𝐴 = 𝐵 → (∃𝑥(𝑥𝐴𝑦𝐶) ↔ ∃𝑥(𝑥𝐵𝑦𝐶)))
5 df-rex 2918 . . . . 5 (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥(𝑥𝐴𝑦𝐶))
6 df-rex 2918 . . . . 5 (∃𝑥𝐵 𝑦𝐶 ↔ ∃𝑥(𝑥𝐵𝑦𝐶))
74, 5, 63bitr4g 303 . . . 4 (∀𝑥 𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐶))
81, 7syl 17 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐶))
98abbidv 2741 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐶})
10 df-iun 4522 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶}
11 df-iun 4522 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐶}
129, 10, 113eqtr4g 2681 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-iun 4522
This theorem is referenced by:  bnj1316  30891  bnj953  31009  bnj1000  31011  bnj966  31014
  Copyright terms: Public domain W3C validator