Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Visualization version   GIF version

Theorem altxpexg 32085
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 32084 . 2 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
2 pwexg 4850 . . . 4 (𝐵𝑊 → 𝒫 𝐵 ∈ V)
3 unexg 6959 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
42, 3sylan2 491 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
5 pwexg 4850 . . 3 ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
6 pwexg 4850 . . 3 (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
74, 5, 63syl 18 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
8 ssexg 4804 . 2 (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V)
91, 7, 8sylancr 695 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  Vcvv 3200  cun 3572  wss 3574  𝒫 cpw 4158   ×× caltxp 32064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-altop 32065  df-altxp 32066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator