Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Visualization version   Unicode version

Theorem altxpexg 32085
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  XX.  B
)  e.  _V )

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 32084 . 2  |-  ( A 
XX.  B )  C_  ~P ~P ( A  u.  ~P B )
2 pwexg 4850 . . . 4  |-  ( B  e.  W  ->  ~P B  e.  _V )
3 unexg 6959 . . . 4  |-  ( ( A  e.  V  /\  ~P B  e.  _V )  ->  ( A  u.  ~P B )  e.  _V )
42, 3sylan2 491 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  ~P B )  e.  _V )
5 pwexg 4850 . . 3  |-  ( ( A  u.  ~P B
)  e.  _V  ->  ~P ( A  u.  ~P B )  e.  _V )
6 pwexg 4850 . . 3  |-  ( ~P ( A  u.  ~P B )  e.  _V  ->  ~P ~P ( A  u.  ~P B )  e.  _V )
74, 5, 63syl 18 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ~P ( A  u.  ~P B )  e.  _V )
8 ssexg 4804 . 2  |-  ( ( ( A  XX.  B
)  C_  ~P ~P ( A  u.  ~P B )  /\  ~P ~P ( A  u.  ~P B )  e.  _V )  ->  ( A  XX.  B )  e.  _V )
91, 7, 8sylancr 695 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  XX.  B
)  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   ~Pcpw 4158    XX. caltxp 32064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-altop 32065  df-altxp 32066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator