![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ('not-and' or 'nand'). This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1486) and the constant false ⊥ (df-fal 1489), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1524), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1525), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1526), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1527). Contrast with ∧ (df-an 386), ∨ (df-or 385), → (wi 4), and ⊻ (df-xor 1465) . (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1447 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 384 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 196 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1449 nancom 1450 nannan 1451 nannot 1453 nanbi 1454 nanbi1 1455 xornan2 1473 trunanfal 1525 nic-mpALT 1597 nic-ax 1598 nic-axALT 1599 nfnan 1830 nfnanOLD 2238 naim1 32384 naim2 32385 df3nandALT1 32396 imnand2 32399 waj-ax 32413 lukshef-ax2 32414 arg-ax 32415 nandsym1 32421 wl-dfnan2 33296 tsna1 33951 tsna2 33952 tsna3 33953 ifpdfnan 37831 ifpnannanb 37852 nanorxor 38504 undisjrab 38505 |
Copyright terms: Public domain | W3C validator |