| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atans | Structured version Visualization version GIF version | ||
| Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
| Ref | Expression |
|---|---|
| atans | ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2)) | |
| 2 | 1 | oveq2d 6666 | . . 3 ⊢ (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2))) |
| 3 | 2 | eleq1d 2686 | . 2 ⊢ (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷)) |
| 4 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
| 5 | 3, 4 | elrab2 3366 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 + caddc 9939 -∞cmnf 10072 2c2 11070 (,]cioc 12176 ↑cexp 12860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: atans2 24658 |
| Copyright terms: Public domain | W3C validator |