| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > atssch | Structured version Visualization version GIF version | ||
| Description: Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| atssch | ⊢ HAtoms ⊆ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-at 29197 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
| 2 | ssrab2 3687 | . 2 ⊢ {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} ⊆ Cℋ | |
| 3 | 1, 2 | eqsstri 3635 | 1 ⊢ HAtoms ⊆ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 2916 ⊆ wss 3574 class class class wbr 4653 Cℋ cch 27786 0ℋc0h 27792 ⋖ℋ ccv 27821 HAtomscat 27822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 df-at 29197 |
| This theorem is referenced by: atelch 29203 shatomistici 29220 hatomistici 29221 chpssati 29222 |
| Copyright terms: Public domain | W3C validator |