![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by theorem ax1rid 9982. Weakened from the original axiom in the form of statement in mulid1 10037, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 9935 | . . 3 class ℝ | |
3 | 1, 2 | wcel 1990 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 9937 | . . . 4 class 1 | |
5 | cmul 9941 | . . . 4 class · | |
6 | 1, 4, 5 | co 6650 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1483 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulid1 10037 mulgt1 10882 ltmulgt11 10883 lemulge11 10885 addltmul 11268 xmulid1 12109 2submod 12731 cshw1 13568 bezoutlem1 15256 cshwshashnsame 15810 numclwwlk6 27248 nmopub2tALT 28768 nmfnleub2 28785 unitdivcld 29947 zrhre 30063 sgnmulrp2 30605 knoppcnlem4 32486 relexpmulnn 38001 relogbmulbexp 42355 |
Copyright terms: Public domain | W3C validator |