MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshw1 Structured version   Visualization version   GIF version

Theorem cshw1 13568
Description: If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshw1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem cshw1
StepHypRef Expression
1 ral0 4076 . . . 4 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
2 oveq2 6658 . . . . . 6 ((#‘𝑊) = 0 → (0..^(#‘𝑊)) = (0..^0))
3 fzo0 12492 . . . . . 6 (0..^0) = ∅
42, 3syl6eq 2672 . . . . 5 ((#‘𝑊) = 0 → (0..^(#‘𝑊)) = ∅)
54raleqdv 3144 . . . 4 ((#‘𝑊) = 0 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
61, 5mpbiri 248 . . 3 ((#‘𝑊) = 0 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
76a1d 25 . 2 ((#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8 simprl 794 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 𝑊 ∈ Word 𝑉)
9 lencl 13324 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
10 1nn0 11308 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1110a1i 11 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 ∈ ℕ0)
12 df-ne 2795 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 0 ↔ ¬ (#‘𝑊) = 0)
13 elnnne0 11306 . . . . . . . . . . . . . . . . 17 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0))
1413simplbi2com 657 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 0 → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1512, 14sylbir 225 . . . . . . . . . . . . . . 15 (¬ (#‘𝑊) = 0 → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1615adantr 481 . . . . . . . . . . . . . 14 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℕ))
1716impcom 446 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (#‘𝑊) ∈ ℕ)
18 df-ne 2795 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ≠ 1 ↔ ¬ (#‘𝑊) = 1)
1918biimpri 218 . . . . . . . . . . . . . . 15 (¬ (#‘𝑊) = 1 → (#‘𝑊) ≠ 1)
2019ad2antll 765 . . . . . . . . . . . . . 14 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (#‘𝑊) ≠ 1)
21 nngt1ne1 11047 . . . . . . . . . . . . . . 15 ((#‘𝑊) ∈ ℕ → (1 < (#‘𝑊) ↔ (#‘𝑊) ≠ 1))
2217, 21syl 17 . . . . . . . . . . . . . 14 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → (1 < (#‘𝑊) ↔ (#‘𝑊) ≠ 1))
2320, 22mpbird 247 . . . . . . . . . . . . 13 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 < (#‘𝑊))
24 elfzo0 12508 . . . . . . . . . . . . 13 (1 ∈ (0..^(#‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 1 < (#‘𝑊)))
2511, 17, 23, 24syl3anbrc 1246 . . . . . . . . . . . 12 (((#‘𝑊) ∈ ℕ0 ∧ (¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1)) → 1 ∈ (0..^(#‘𝑊)))
2625ex 450 . . . . . . . . . . 11 ((#‘𝑊) ∈ ℕ0 → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
279, 26syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
2827adantr 481 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → 1 ∈ (0..^(#‘𝑊))))
2928impcom 446 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 1 ∈ (0..^(#‘𝑊)))
30 simprr 796 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (𝑊 cyclShift 1) = 𝑊)
31 lbfzo0 12507 . . . . . . . . . . . . . . . . 17 (0 ∈ (0..^(#‘𝑊)) ↔ (#‘𝑊) ∈ ℕ)
3231biimpri 218 . . . . . . . . . . . . . . . 16 ((#‘𝑊) ∈ ℕ → 0 ∈ (0..^(#‘𝑊)))
3313, 32sylbir 225 . . . . . . . . . . . . . . 15 (((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0) → 0 ∈ (0..^(#‘𝑊)))
3433ex 450 . . . . . . . . . . . . . 14 ((#‘𝑊) ∈ ℕ0 → ((#‘𝑊) ≠ 0 → 0 ∈ (0..^(#‘𝑊))))
3512, 34syl5bir 233 . . . . . . . . . . . . 13 ((#‘𝑊) ∈ ℕ0 → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
369, 35syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
3736adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → (¬ (#‘𝑊) = 0 → 0 ∈ (0..^(#‘𝑊))))
3837com12 32 . . . . . . . . . 10 (¬ (#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(#‘𝑊))))
3938adantr 481 . . . . . . . . 9 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 0 ∈ (0..^(#‘𝑊))))
4039imp 445 . . . . . . . 8 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → 0 ∈ (0..^(#‘𝑊)))
41 elfzoelz 12470 . . . . . . . . . 10 (1 ∈ (0..^(#‘𝑊)) → 1 ∈ ℤ)
42 cshweqrep 13567 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4341, 42sylan2 491 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) → (((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4443imp 445 . . . . . . . 8 (((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑊))) ∧ ((𝑊 cyclShift 1) = 𝑊 ∧ 0 ∈ (0..^(#‘𝑊)))) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
458, 29, 30, 40, 44syl22anc 1327 . . . . . . 7 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
46 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
47 fzossnn0 12499 . . . . . . . . 9 (0 ∈ ℕ0 → (0..^(#‘𝑊)) ⊆ ℕ0)
48 ssralv 3666 . . . . . . . . 9 ((0..^(#‘𝑊)) ⊆ ℕ0 → (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊)))))
4946, 47, 48mp2b 10 . . . . . . . 8 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))))
50 eqcom 2629 . . . . . . . . . 10 ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) ↔ (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0))
51 elfzoelz 12470 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^(#‘𝑊)) → 𝑖 ∈ ℤ)
52 zre 11381 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
53 ax-1rid 10006 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℝ → (𝑖 · 1) = 𝑖)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → (𝑖 · 1) = 𝑖)
5554oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = (0 + 𝑖))
56 zcn 11382 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
5756addid2d 10237 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → (0 + 𝑖) = 𝑖)
5855, 57eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (0 + (𝑖 · 1)) = 𝑖)
5951, 58syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^(#‘𝑊)) → (0 + (𝑖 · 1)) = 𝑖)
6059oveq1d 6665 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(#‘𝑊)) → ((0 + (𝑖 · 1)) mod (#‘𝑊)) = (𝑖 mod (#‘𝑊)))
61 zmodidfzoimp 12700 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^(#‘𝑊)) → (𝑖 mod (#‘𝑊)) = 𝑖)
6260, 61eqtrd 2656 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^(#‘𝑊)) → ((0 + (𝑖 · 1)) mod (#‘𝑊)) = 𝑖)
6362fveq2d 6195 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(#‘𝑊)) → (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊𝑖))
6463eqeq1d 2624 . . . . . . . . . . 11 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0) ↔ (𝑊𝑖) = (𝑊‘0)))
6564biimpd 219 . . . . . . . . . 10 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) = (𝑊‘0) → (𝑊𝑖) = (𝑊‘0)))
6650, 65syl5bi 232 . . . . . . . . 9 (𝑖 ∈ (0..^(#‘𝑊)) → ((𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → (𝑊𝑖) = (𝑊‘0)))
6766ralimia 2950 . . . . . . . 8 (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
6849, 67syl 17 . . . . . . 7 (∀𝑖 ∈ ℕ0 (𝑊‘0) = (𝑊‘((0 + (𝑖 · 1)) mod (#‘𝑊))) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
6945, 68syl 17 . . . . . 6 (((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
7069ex 450 . . . . 5 ((¬ (#‘𝑊) = 0 ∧ ¬ (#‘𝑊) = 1) → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7170impancom 456 . . . 4 ((¬ (#‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → (¬ (#‘𝑊) = 1 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
72 eqid 2622 . . . . . 6 (𝑊‘0) = (𝑊‘0)
73 c0ex 10034 . . . . . . 7 0 ∈ V
74 fveq2 6191 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
7574eqeq1d 2624 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0)))
7673, 75ralsn 4222 . . . . . 6 (∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0) ↔ (𝑊‘0) = (𝑊‘0))
7772, 76mpbir 221 . . . . 5 𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)
78 oveq2 6658 . . . . . . 7 ((#‘𝑊) = 1 → (0..^(#‘𝑊)) = (0..^1))
79 fzo01 12550 . . . . . . 7 (0..^1) = {0}
8078, 79syl6eq 2672 . . . . . 6 ((#‘𝑊) = 1 → (0..^(#‘𝑊)) = {0})
8180raleqdv 3144 . . . . 5 ((#‘𝑊) = 1 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ {0} (𝑊𝑖) = (𝑊‘0)))
8277, 81mpbiri 248 . . . 4 ((#‘𝑊) = 1 → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
8371, 82pm2.61d2 172 . . 3 ((¬ (#‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊)) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
8483ex 450 . 2 (¬ (#‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0)))
857, 84pm2.61i 176 1 ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshw1repsw  13569
  Copyright terms: Public domain W3C validator