MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Structured version   Visualization version   GIF version

Theorem bezoutlem1 15256
Description: Lemma for bezout 15260. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
bezoutlem1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4 (𝜑𝐴 ∈ ℤ)
2 fveq2 6191 . . . . . . 7 (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴))
3 oveq1 6657 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥))
42, 3eqeq12d 2637 . . . . . 6 (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
54rexbidv 3052 . . . . 5 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)))
6 zre 11381 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 1z 11407 . . . . . . . . 9 1 ∈ ℤ
8 ax-1rid 10006 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧)
98eqcomd 2628 . . . . . . . . 9 (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1))
10 oveq2 6658 . . . . . . . . . . 11 (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1))
1110eqeq2d 2632 . . . . . . . . . 10 (𝑥 = 1 → (𝑧 = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 1)))
1211rspcev 3309 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑧 = (𝑧 · 1)) → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
137, 9, 12sylancr 695 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
14 eqeq1 2626 . . . . . . . . 9 ((abs‘𝑧) = 𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥)))
1514rexbidv 3052 . . . . . . . 8 ((abs‘𝑧) = 𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥)))
1613, 15syl5ibrcom 237 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
17 neg1z 11413 . . . . . . . . 9 -1 ∈ ℤ
18 recn 10026 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
1918mulm1d 10482 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = -𝑧)
20 neg1cn 11124 . . . . . . . . . . 11 -1 ∈ ℂ
21 mulcom 10022 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1))
2220, 18, 21sylancr 695 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = (𝑧 · -1))
2319, 22eqtr3d 2658 . . . . . . . . 9 (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1))
24 oveq2 6658 . . . . . . . . . . 11 (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1))
2524eqeq2d 2632 . . . . . . . . . 10 (𝑥 = -1 → (-𝑧 = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · -1)))
2625rspcev 3309 . . . . . . . . 9 ((-1 ∈ ℤ ∧ -𝑧 = (𝑧 · -1)) → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
2717, 23, 26sylancr 695 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
28 eqeq1 2626 . . . . . . . . 9 ((abs‘𝑧) = -𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥)))
2928rexbidv 3052 . . . . . . . 8 ((abs‘𝑧) = -𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥)))
3027, 29syl5ibrcom 237 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
31 absor 14040 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧))
3216, 30, 31mpjaod 396 . . . . . 6 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
336, 32syl 17 . . . . 5 (𝑧 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
345, 33vtoclga 3272 . . . 4 (𝐴 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
351, 34syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
36 bezout.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
3736zcnd 11483 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐵 ∈ ℂ)
3938mul01d 10235 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐵 · 0) = 0)
4039oveq2d 6666 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0))
411zcnd 11483 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 zcn 11382 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
43 mulcl 10020 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
4441, 42, 43syl2an 494 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ)
4544addid1d 10236 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥))
4640, 45eqtrd 2656 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥))
4746eqeq2d 2632 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
48 0z 11388 . . . . . 6 0 ∈ ℤ
49 oveq2 6658 . . . . . . . . 9 (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0))
5049oveq2d 6666 . . . . . . . 8 (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0)))
5150eqeq2d 2632 . . . . . . 7 (𝑦 = 0 → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))))
5251rspcev 3309 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5348, 52mpan 706 . . . . 5 ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5447, 53syl6bir 244 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5554reximdva 3017 . . 3 (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5635, 55mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
57 nnabscl 14065 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
5857ex 450 . . 3 (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
591, 58syl 17 . 2 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
60 eqeq1 2626 . . . . 5 (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
61602rexbidv 3057 . . . 4 (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
62 bezout.1 . . . 4 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
6361, 62elrab2 3366 . . 3 ((abs‘𝐴) ∈ 𝑀 ↔ ((abs‘𝐴) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
6463simplbi2com 657 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀))
6556, 59, 64sylsyld 61 1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  cn 11020  cz 11377  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  bezoutlem2  15257  bezoutlem4  15259
  Copyright terms: Public domain W3C validator