Proof of Theorem bezoutlem1
| Step | Hyp | Ref
| Expression |
| 1 | | bezout.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 2 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴)) |
| 3 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥)) |
| 4 | 2, 3 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥))) |
| 5 | 4 | rexbidv 3052 |
. . . . 5
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))) |
| 6 | | zre 11381 |
. . . . . 6
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
| 7 | | 1z 11407 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 8 | | ax-1rid 10006 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧) |
| 9 | 8 | eqcomd 2628 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1)) |
| 10 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1)) |
| 11 | 10 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑧 = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 1))) |
| 12 | 11 | rspcev 3309 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑧 =
(𝑧 · 1)) →
∃𝑥 ∈ ℤ
𝑧 = (𝑧 · 𝑥)) |
| 13 | 7, 9, 12 | sylancr 695 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
𝑧 = (𝑧 · 𝑥)) |
| 14 | | eqeq1 2626 |
. . . . . . . . 9
⊢
((abs‘𝑧) =
𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥))) |
| 15 | 14 | rexbidv 3052 |
. . . . . . . 8
⊢
((abs‘𝑧) =
𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))) |
| 16 | 13, 15 | syl5ibrcom 237 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))) |
| 17 | | neg1z 11413 |
. . . . . . . . 9
⊢ -1 ∈
ℤ |
| 18 | | recn 10026 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
| 19 | 18 | mulm1d 10482 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (-1
· 𝑧) = -𝑧) |
| 20 | | neg1cn 11124 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
| 21 | | mulcom 10022 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ 𝑧
∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1)) |
| 22 | 20, 18, 21 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → (-1
· 𝑧) = (𝑧 · -1)) |
| 23 | 19, 22 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1)) |
| 24 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1)) |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑥 = -1 → (-𝑧 = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · -1))) |
| 26 | 25 | rspcev 3309 |
. . . . . . . . 9
⊢ ((-1
∈ ℤ ∧ -𝑧 =
(𝑧 · -1)) →
∃𝑥 ∈ ℤ
-𝑧 = (𝑧 · 𝑥)) |
| 27 | 17, 23, 26 | sylancr 695 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
-𝑧 = (𝑧 · 𝑥)) |
| 28 | | eqeq1 2626 |
. . . . . . . . 9
⊢
((abs‘𝑧) =
-𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥))) |
| 29 | 28 | rexbidv 3052 |
. . . . . . . 8
⊢
((abs‘𝑧) =
-𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))) |
| 30 | 27, 29 | syl5ibrcom 237 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))) |
| 31 | | absor 14040 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ →
((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧)) |
| 32 | 16, 30, 31 | mpjaod 396 |
. . . . . 6
⊢ (𝑧 ∈ ℝ →
∃𝑥 ∈ ℤ
(abs‘𝑧) = (𝑧 · 𝑥)) |
| 33 | 6, 32 | syl 17 |
. . . . 5
⊢ (𝑧 ∈ ℤ →
∃𝑥 ∈ ℤ
(abs‘𝑧) = (𝑧 · 𝑥)) |
| 34 | 5, 33 | vtoclga 3272 |
. . . 4
⊢ (𝐴 ∈ ℤ →
∃𝑥 ∈ ℤ
(abs‘𝐴) = (𝐴 · 𝑥)) |
| 35 | 1, 34 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)) |
| 36 | | bezout.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 37 | 36 | zcnd 11483 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝐵 ∈ ℂ) |
| 39 | 38 | mul01d 10235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐵 · 0) = 0) |
| 40 | 39 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0)) |
| 41 | 1 | zcnd 11483 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 42 | | zcn 11382 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 43 | | mulcl 10020 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ) |
| 44 | 41, 42, 43 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ) |
| 45 | 44 | addid1d 10236 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥)) |
| 46 | 40, 45 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥)) |
| 47 | 46 | eqeq2d 2632 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥))) |
| 48 | | 0z 11388 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 49 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0)) |
| 50 | 49 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0))) |
| 51 | 50 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑦 = 0 → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)))) |
| 52 | 51 | rspcev 3309 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 53 | 48, 52 | mpan 706 |
. . . . 5
⊢
((abs‘𝐴) =
((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 54 | 47, 53 | syl6bir 244 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 55 | 54 | reximdva 3017 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 56 | 35, 55 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 57 | | nnabscl 14065 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℕ) |
| 58 | 57 | ex 450 |
. . 3
⊢ (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈
ℕ)) |
| 59 | 1, 58 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ)) |
| 60 | | eqeq1 2626 |
. . . . 5
⊢ (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 61 | 60 | 2rexbidv 3057 |
. . . 4
⊢ (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 62 | | bezout.1 |
. . . 4
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
| 63 | 61, 62 | elrab2 3366 |
. . 3
⊢
((abs‘𝐴)
∈ 𝑀 ↔
((abs‘𝐴) ∈
ℕ ∧ ∃𝑥
∈ ℤ ∃𝑦
∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 64 | 63 | simplbi2com 657 |
. 2
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ (abs‘𝐴) =
((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀)) |
| 65 | 56, 59, 64 | sylsyld 61 |
1
⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |