Detailed syntax breakdown of Axiom ax-bgbltosilvaOLD
Step | Hyp | Ref
| Expression |
1 | | cN |
. . . 4
class 𝑁 |
2 | | ceven 41537 |
. . . 4
class
Even |
3 | 1, 2 | wcel 1990 |
. . 3
wff 𝑁 ∈ Even |
4 | | c4 11072 |
. . . 4
class
4 |
5 | | clt 10074 |
. . . 4
class
< |
6 | 4, 1, 5 | wbr 4653 |
. . 3
wff 4 <
𝑁 |
7 | | c10 11078 |
. . . . . 6
class
10 |
8 | | c1 9937 |
. . . . . . 7
class
1 |
9 | | c8 11076 |
. . . . . . 7
class
8 |
10 | 8, 9 | cdc 11493 |
. . . . . 6
class ;18 |
11 | | cexp 12860 |
. . . . . 6
class
↑ |
12 | 7, 10, 11 | co 6650 |
. . . . 5
class
(10↑;18) |
13 | | cmul 9941 |
. . . . 5
class
· |
14 | 4, 12, 13 | co 6650 |
. . . 4
class (4
· (10↑;18)) |
15 | | cle 10075 |
. . . 4
class
≤ |
16 | 1, 14, 15 | wbr 4653 |
. . 3
wff 𝑁 ≤ (4 · (10↑;18)) |
17 | 3, 6, 16 | w3a 1037 |
. 2
wff (𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (10↑;18))) |
18 | | cgbe 41633 |
. . 3
class
GoldbachEven |
19 | 1, 18 | wcel 1990 |
. 2
wff 𝑁 ∈
GoldbachEven |
20 | 17, 19 | wi 4 |
1
wff ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (10↑;18))) → 𝑁 ∈ GoldbachEven ) |