Proof of Theorem bgoldbachltOLD
| Step | Hyp | Ref
| Expression |
| 1 | | 4nn 11187 |
. . 3
⊢ 4 ∈
ℕ |
| 2 | | 10nnOLD 11193 |
. . . 4
⊢ 10 ∈
ℕ |
| 3 | | 1nn0 11308 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 4 | | 8nn 11191 |
. . . . . 6
⊢ 8 ∈
ℕ |
| 5 | 3, 4 | decnncl 11518 |
. . . . 5
⊢ ;18 ∈ ℕ |
| 6 | 5 | nnnn0i 11300 |
. . . 4
⊢ ;18 ∈
ℕ0 |
| 7 | | nnexpcl 12873 |
. . . 4
⊢ ((10
∈ ℕ ∧ ;18 ∈
ℕ0) → (10↑;18) ∈ ℕ) |
| 8 | 2, 6, 7 | mp2an 708 |
. . 3
⊢
(10↑;18) ∈
ℕ |
| 9 | 1, 8 | nnmulcli 11044 |
. 2
⊢ (4
· (10↑;18)) ∈
ℕ |
| 10 | | id 22 |
. . 3
⊢ ((4
· (10↑;18)) ∈
ℕ → (4 · (10↑;18)) ∈ ℕ) |
| 11 | | breq2 4657 |
. . . . 5
⊢ (𝑚 = (4 · (10↑;18)) → ((4 · (10↑;18)) ≤ 𝑚 ↔ (4 · (10↑;18)) ≤ (4 · (10↑;18)))) |
| 12 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑚 = (4 · (10↑;18)) → (𝑛 < 𝑚 ↔ 𝑛 < (4 · (10↑;18)))) |
| 13 | 12 | anbi2d 740 |
. . . . . . 7
⊢ (𝑚 = (4 · (10↑;18)) → ((4 < 𝑛 ∧ 𝑛 < 𝑚) ↔ (4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))))) |
| 14 | 13 | imbi1d 331 |
. . . . . 6
⊢ (𝑚 = (4 · (10↑;18)) → (((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven ))) |
| 15 | 14 | ralbidv 2986 |
. . . . 5
⊢ (𝑚 = (4 · (10↑;18)) → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven ))) |
| 16 | 11, 15 | anbi12d 747 |
. . . 4
⊢ (𝑚 = (4 · (10↑;18)) → (((4 ·
(10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 ·
(10↑;18)) ≤ (4 ·
(10↑;18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven )))) |
| 17 | 16 | adantl 482 |
. . 3
⊢ (((4
· (10↑;18)) ∈
ℕ ∧ 𝑚 = (4
· (10↑;18))) →
(((4 · (10↑;18)) ≤
𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 ·
(10↑;18)) ≤ (4 ·
(10↑;18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven )))) |
| 18 | | nnre 11027 |
. . . . 5
⊢ ((4
· (10↑;18)) ∈
ℕ → (4 · (10↑;18)) ∈ ℝ) |
| 19 | 18 | leidd 10594 |
. . . 4
⊢ ((4
· (10↑;18)) ∈
ℕ → (4 · (10↑;18)) ≤ (4 · (10↑;18))) |
| 20 | | simplr 792 |
. . . . . . 7
⊢ ((((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) ∧ (4 < 𝑛 ∧
𝑛 < (4 ·
(10↑;18)))) → 𝑛 ∈ Even ) |
| 21 | | simprl 794 |
. . . . . . 7
⊢ ((((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) ∧ (4 < 𝑛 ∧
𝑛 < (4 ·
(10↑;18)))) → 4 <
𝑛) |
| 22 | | evenz 41543 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℤ) |
| 23 | 22 | zred 11482 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Even → 𝑛 ∈
ℝ) |
| 24 | | ltle 10126 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℝ ∧ (4
· (10↑;18)) ∈
ℝ) → (𝑛 < (4
· (10↑;18)) →
𝑛 ≤ (4 ·
(10↑;18)))) |
| 25 | 23, 18, 24 | syl2anr 495 |
. . . . . . . . 9
⊢ (((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) → (𝑛 < (4
· (10↑;18)) →
𝑛 ≤ (4 ·
(10↑;18)))) |
| 26 | 25 | a1d 25 |
. . . . . . . 8
⊢ (((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) → (4 < 𝑛 →
(𝑛 < (4 ·
(10↑;18)) → 𝑛 ≤ (4 · (10↑;18))))) |
| 27 | 26 | imp32 449 |
. . . . . . 7
⊢ ((((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) ∧ (4 < 𝑛 ∧
𝑛 < (4 ·
(10↑;18)))) → 𝑛 ≤ (4 · (10↑;18))) |
| 28 | | ax-bgbltosilvaOLD 41706 |
. . . . . . 7
⊢ ((𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 ≤ (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven ) |
| 29 | 20, 21, 27, 28 | syl3anc 1326 |
. . . . . 6
⊢ ((((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) ∧ (4 < 𝑛 ∧
𝑛 < (4 ·
(10↑;18)))) → 𝑛 ∈ GoldbachEven
) |
| 30 | 29 | ex 450 |
. . . . 5
⊢ (((4
· (10↑;18)) ∈
ℕ ∧ 𝑛 ∈ Even
) → ((4 < 𝑛 ∧
𝑛 < (4 ·
(10↑;18))) → 𝑛 ∈ GoldbachEven
)) |
| 31 | 30 | ralrimiva 2966 |
. . . 4
⊢ ((4
· (10↑;18)) ∈
ℕ → ∀𝑛
∈ Even ((4 < 𝑛
∧ 𝑛 < (4 ·
(10↑;18))) → 𝑛 ∈ GoldbachEven
)) |
| 32 | 19, 31 | jca 554 |
. . 3
⊢ ((4
· (10↑;18)) ∈
ℕ → ((4 · (10↑;18)) ≤ (4 · (10↑;18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < (4 · (10↑;18))) → 𝑛 ∈ GoldbachEven ))) |
| 33 | 10, 17, 32 | rspcedvd 3317 |
. 2
⊢ ((4
· (10↑;18)) ∈
ℕ → ∃𝑚
∈ ℕ ((4 · (10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))) |
| 34 | 9, 33 | ax-mp 5 |
1
⊢
∃𝑚 ∈
ℕ ((4 · (10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) |