| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-distr | Structured version Visualization version GIF version | ||
| Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by theorem axdistr 9979. Proofs should normally use adddi 10025 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-distr | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 9934 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 1990 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 1990 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 1990 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1037 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 9939 | . . . . 5 class + | |
| 10 | 4, 6, 9 | co 6650 | . . . 4 class (𝐵 + 𝐶) |
| 11 | cmul 9941 | . . . 4 class · | |
| 12 | 1, 10, 11 | co 6650 | . . 3 class (𝐴 · (𝐵 + 𝐶)) |
| 13 | 1, 4, 11 | co 6650 | . . . 4 class (𝐴 · 𝐵) |
| 14 | 1, 6, 11 | co 6650 | . . . 4 class (𝐴 · 𝐶) |
| 15 | 13, 14, 9 | co 6650 | . . 3 class ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| 16 | 12, 15 | wceq 1483 | . 2 wff (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
| 17 | 8, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: adddi 10025 |
| Copyright terms: Public domain | W3C validator |