| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax8dfeq | Structured version Visualization version GIF version | ||
| Description: A version of ax-8 1992 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| Ref | Expression |
|---|---|
| ax8dfeq | ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e 2250 | . 2 ⊢ ∃𝑧 𝑧 = 𝑤 | |
| 2 | ax8 1996 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1947 | . . 3 ⊢ (𝑧 = 𝑤 → (𝑤 ∈ 𝑥 → 𝑧 ∈ 𝑥)) |
| 4 | ax8 1996 | . . 3 ⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝑦 → 𝑤 ∈ 𝑦)) | |
| 5 | 3, 4 | imim12d 81 | . 2 ⊢ (𝑧 = 𝑤 → ((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦))) |
| 6 | 1, 5 | eximii 1764 | 1 ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |