![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version |
Description: Inference associated with eximi 1762. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1762 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: exiftru 1891 spimeh 1925 ax6evr 1942 spimv1 2115 ax6e 2250 spim 2254 spimed 2255 spimv 2257 spei 2261 equvini 2346 equvel 2347 euequ1 2476 euex 2494 darii 2565 barbari 2567 festino 2571 baroco 2572 cesaro 2573 camestros 2574 datisi 2575 disamis 2576 felapton 2579 darapti 2580 dimatis 2582 fresison 2583 calemos 2584 fesapo 2585 bamalip 2586 vtoclf 3258 vtocl 3259 axrep2 4773 axnul 4788 nalset 4795 notzfaus 4840 el 4847 dtru 4857 eusv2nf 4864 dvdemo1 4902 dvdemo2 4903 axpr 4905 snnexOLD 6967 inf1 8519 bnd 8755 axpowndlem2 9420 grothomex 9651 bnj101 30789 axextdfeq 31703 ax8dfeq 31704 axextndbi 31710 snelsingles 32029 bj-ax6elem2 32652 bj-spimedv 32719 bj-spimvv 32721 bj-speiv 32724 bj-axrep2 32789 bj-nalset 32794 bj-el 32796 bj-dtru 32797 bj-dvdemo1 32802 bj-dvdemo2 32803 ax6er 32820 bj-vtoclf 32908 wl-exeq 33321 spd 42425 elpglem2 42455 eximp-surprise2 42531 |
Copyright terms: Public domain | W3C validator |