![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1944 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: equtr 1948 equeuclr 1950 equtr2OLD 1956 stdpc7 1958 equvinvOLD 1962 spfw 1965 spfwOLD 1966 cbvalw 1968 alcomiw 1971 ax8 1996 elequ1 1997 ax9 2003 elequ2 2004 sbequ12r 2112 cbvalv1 2175 cbval 2271 cbvalv 2273 sbequ 2376 sb9 2426 reu8 3402 sbcco2 3459 reu8nf 3516 opeliunxp 5170 elrnmpt1 5374 fvn0ssdmfun 6350 elabrex 6501 snnexOLD 6967 tfisi 7058 tfinds2 7063 opabex3d 7145 opabex3 7146 mpt2curryd 7395 boxriin 7950 ixpiunwdom 8496 elirrv 8504 rabssnn0fi 12785 fproddivf 14718 prmodvdslcmf 15751 imasvscafn 16197 1mavmul 20354 ptbasfi 21384 elmptrab 21630 pcoass 22824 iundisj2 23317 dchrisumlema 25177 dchrisumlem2 25179 cusgrfilem2 26352 frgrncvvdeq 27173 frgr2wwlk1 27193 iundisj2f 29403 iundisj2fi 29556 bnj1014 31030 cvmsss2 31256 ax8dfeq 31704 bj-ssbid1ALT 32648 bj-cbvexw 32664 bj-sb 32677 bj-cleljustab 32847 bj-ax9-2 32891 finxpreclem6 33233 wl-nfs1t 33324 wl-equsb4 33338 wl-euequ1f 33356 wl-ax11-lem8 33369 wl-ax8clv1 33378 wl-clelv2-just 33379 matunitlindflem1 33405 poimirlem26 33435 mblfinlem2 33447 sdclem2 33538 axc11-o 34236 rexzrexnn0 37368 elabrexg 39206 disjinfi 39380 dvnmptdivc 40153 iblsplitf 40186 vonn0ioo2 40904 vonn0icc2 40906 uspgrsprf1 41755 opeliun2xp 42111 |
Copyright terms: Public domain | W3C validator |