| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axsep2 | Structured version Visualization version GIF version | ||
| Description: A less restrictive version of the Separation Scheme axsep 4780, where variables 𝑥 and 𝑧 can both appear free in the wff 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version was derived from the more restrictive ax-sep 4781 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| axsep2 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2004 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧)) | |
| 2 | 1 | anbi1d 741 | . . . . . 6 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 3 | anabs5 851 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑧 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | |
| 4 | 2, 3 | syl6bb 276 | . . . . 5 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
| 5 | 4 | bibi2d 332 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 6 | 5 | albidv 1849 | . . 3 ⊢ (𝑤 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 7 | 6 | exbidv 1850 | . 2 ⊢ (𝑤 = 𝑧 → (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
| 8 | ax-sep 4781 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑤 ∧ (𝑥 ∈ 𝑧 ∧ 𝜑))) | |
| 9 | 7, 8 | chvarv 2263 | 1 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |