![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2003 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2003 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1947 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 202 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: ax12wdemo 2012 dveel2 2371 elsb4 2435 axext3 2604 axext3ALT 2605 axext4 2606 bm1.1 2607 eleq2w 2685 axrep1 4772 axrep2 4773 axrep3 4774 axrep4 4775 axsep2 4782 bm1.3ii 4784 nalset 4795 fv3 6206 zfun 6950 tz7.48lem 7536 aceq1 8940 aceq0 8941 aceq2 8942 dfac2a 8952 kmlem4 8975 axdc3lem2 9273 zfac 9282 nd2 9410 nd3 9411 axrepndlem2 9415 axunndlem1 9417 axunnd 9418 axpowndlem2 9420 axpowndlem3 9421 axpowndlem4 9422 axpownd 9423 axregndlem2 9425 axregnd 9426 axinfndlem1 9427 axacndlem5 9433 zfcndrep 9436 zfcndun 9437 zfcndac 9441 axgroth4 9654 nqereu 9751 mdetunilem9 20426 neiptopnei 20936 2ndc1stc 21254 restlly 21286 kqt0lem 21539 regr1lem2 21543 nrmr0reg 21552 hauspwpwf1 21791 dya2iocuni 30345 erdsze 31184 untsucf 31587 untangtr 31591 dfon2lem3 31690 dfon2lem6 31693 dfon2lem7 31694 dfon2lem8 31695 dfon2 31697 axext4dist 31706 distel 31709 axextndbi 31710 fness 32344 fneref 32345 bj-elequ2g 32666 bj-elequ12 32668 bj-axext3 32769 bj-axrep1 32788 bj-axrep2 32789 bj-axrep3 32790 bj-axrep4 32791 bj-nalset 32794 bj-axc14nf 32838 bj-axsep2 32921 matunitlindflem1 33405 prtlem13 34153 prtlem15 34160 prtlem17 34161 dveel2ALT 34224 ax12el 34227 aomclem8 37631 elintima 37945 axc11next 38607 |
Copyright terms: Public domain | W3C validator |