![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotleme | Structured version Visualization version GIF version |
Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
Ref | Expression |
---|---|
ballotleme | ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . . 5 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
2 | 1 | fveq1d 6193 | . . . 4 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑖) = ((𝐹‘𝐶)‘𝑖)) |
3 | 2 | breq2d 4665 | . . 3 ⊢ (𝑑 = 𝐶 → (0 < ((𝐹‘𝑑)‘𝑖) ↔ 0 < ((𝐹‘𝐶)‘𝑖))) |
4 | 3 | ralbidv 2986 | . 2 ⊢ (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
5 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
6 | fveq2 6191 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
7 | 6 | fveq1d 6193 | . . . . . 6 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑖) = ((𝐹‘𝑑)‘𝑖)) |
8 | 7 | breq2d 4665 | . . . . 5 ⊢ (𝑐 = 𝑑 → (0 < ((𝐹‘𝑐)‘𝑖) ↔ 0 < ((𝐹‘𝑑)‘𝑖))) |
9 | 8 | ralbidv 2986 | . . . 4 ⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖))) |
10 | 9 | cbvrabv 3199 | . . 3 ⊢ {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
11 | 5, 10 | eqtri 2644 | . 2 ⊢ 𝐸 = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
12 | 4, 11 | elrab2 3366 | 1 ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∖ cdif 3571 ∩ cin 3573 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 − cmin 10266 / cdiv 10684 ℕcn 11020 ℤcz 11377 ...cfz 12326 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: ballotlemodife 30559 ballotlem4 30560 |
Copyright terms: Public domain | W3C validator |