| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabv | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabv | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2764 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1843 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfv 1843 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvrabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrab 3198 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Copyright terms: Public domain | W3C validator |