Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Structured version   Visualization version   GIF version

Theorem ballotlemoex 30547
Description: 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemoex 𝑂 ∈ V
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
2 ovex 6678 . . 3 (1...(𝑀 + 𝑁)) ∈ V
32pwex 4848 . 2 𝒫 (1...(𝑀 + 𝑁)) ∈ V
41, 3rabex2 4815 1 𝑂 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  𝒫 cpw 4158  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939  cn 11020  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  ballotlem2  30550  ballotlem8  30598
  Copyright terms: Public domain W3C validator