Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   GIF version

Theorem ballotlem2 30550
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
Assertion
Ref Expression
ballotlem2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem ballotlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
2 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
3 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
4 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
52, 3, 4ballotlemoex 30547 . . . . . 6 𝑂 ∈ V
65elpw2 4828 . . . . 5 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 ↔ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂)
71, 6mpbir 221 . . . 4 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
8 fveq2 6191 . . . . . 6 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (#‘𝑥) = (#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
98oveq1d 6665 . . . . 5 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((#‘𝑥) / (#‘𝑂)) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
10 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
11 ovex 6678 . . . . 5 ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) ∈ V
129, 10, 11fvmpt 6282 . . . 4 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
137, 12ax-mp 5 . . 3 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))
14 an32 839 . . . . . . . . 9 (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (#‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
15 2eluzge1 11734 . . . . . . . . . . . . . . 15 2 ∈ (ℤ‘1)
16 fzss1 12380 . . . . . . . . . . . . . . 15 (2 ∈ (ℤ‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)))
1715, 16ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))
18 sspwb 4917 . . . . . . . . . . . . . 14 ((2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) ↔ 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁)))
1917, 18mpbi 220 . . . . . . . . . . . . 13 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))
2019sseli 3599 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)))
21 1lt2 11194 . . . . . . . . . . . . . . . . 17 1 < 2
22 1re 10039 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
23 2re 11090 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
2422, 23ltnlei 10158 . . . . . . . . . . . . . . . . 17 (1 < 2 ↔ ¬ 2 ≤ 1)
2521, 24mpbi 220 . . . . . . . . . . . . . . . 16 ¬ 2 ≤ 1
26 elfzle1 12344 . . . . . . . . . . . . . . . 16 (1 ∈ (2...(𝑀 + 𝑁)) → 2 ≤ 1)
2725, 26mto 188 . . . . . . . . . . . . . . 15 ¬ 1 ∈ (2...(𝑀 + 𝑁))
28 elelpwi 4171 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁)))
2927, 28mto 188 . . . . . . . . . . . . . 14 ¬ (1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
30 ancom 466 . . . . . . . . . . . . . 14 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐))
3129, 30mtbi 312 . . . . . . . . . . . . 13 ¬ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)
3231imnani 439 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐)
3320, 32jca 554 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
34 ssin 3835 . . . . . . . . . . . . 13 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}))
35 1le2 11241 . . . . . . . . . . . . . . . . . . . . . 22 1 ≤ 2
36 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
37 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ≤ 𝑀
39 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
403, 39ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ≤ 𝑁
412nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 ∈ ℝ
423nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑁 ∈ ℝ
4322, 22, 41, 42le2addi 10591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ≤ 𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁))
4438, 40, 43mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) ≤ (𝑀 + 𝑁)
4536, 44eqbrtrri 4676 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ (𝑀 + 𝑁)
4641, 42readdcli 10053 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 + 𝑁) ∈ ℝ
4722, 23, 46letri 10166 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ≤ 2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁))
4835, 45, 47mp2an 708 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ (𝑀 + 𝑁)
49 1z 11407 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
50 nnaddcl 11042 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
512, 3, 50mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 + 𝑁) ∈ ℕ
5251nnzi 11401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℤ
53 eluz 11701 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁)))
5449, 52, 53mp2an 708 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁))
5548, 54mpbir 221 . . . . . . . . . . . . . . . . . . . 20 (𝑀 + 𝑁) ∈ (ℤ‘1)
56 elfzp12 12419 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 𝑁) ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5857biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5958orcanai 952 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))
6036oveq1i 6660 . . . . . . . . . . . . . . . . 17 ((1 + 1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁))
6159, 60syl6eleq 2711 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁)))
6261ss2abi 3674 . . . . . . . . . . . . . . 15 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))}
63 inab 3895 . . . . . . . . . . . . . . . 16 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)}
64 abid2 2745 . . . . . . . . . . . . . . . . 17 {𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁))
6564ineq1i 3810 . . . . . . . . . . . . . . . 16 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
6663, 65eqtr3i 2646 . . . . . . . . . . . . . . 15 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
67 abid2 2745 . . . . . . . . . . . . . . 15 {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁))
6862, 66, 673sstr3i 3643 . . . . . . . . . . . . . 14 ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))
69 sstr 3611 . . . . . . . . . . . . . 14 ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
7068, 69mpan2 707 . . . . . . . . . . . . 13 (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
7134, 70sylbi 207 . . . . . . . . . . . 12 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
72 selpw 4165 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁)))
73 ssab 3672 . . . . . . . . . . . . . 14 (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1))
74 df-ex 1705 . . . . . . . . . . . . . . . . 17 (∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
7574bicomi 214 . . . . . . . . . . . . . . . 16 (¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7675con1bii 346 . . . . . . . . . . . . . . 15 (¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
77 df-clel 2618 . . . . . . . . . . . . . . . 16 (1 ∈ 𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7877notbii 310 . . . . . . . . . . . . . . 15 (¬ 1 ∈ 𝑐 ↔ ¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
79 imnang 1769 . . . . . . . . . . . . . . . 16 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
80 ancom 466 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 1 ∧ 𝑖𝑐) ↔ (𝑖𝑐𝑖 = 1))
8180notbii 310 . . . . . . . . . . . . . . . . 17 (¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ (𝑖𝑐𝑖 = 1))
8281albii 1747 . . . . . . . . . . . . . . . 16 (∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
8379, 82bitr4i 267 . . . . . . . . . . . . . . 15 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
8476, 78, 833bitr4ri 293 . . . . . . . . . . . . . 14 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐)
8573, 84bitr2i 265 . . . . . . . . . . . . 13 (¬ 1 ∈ 𝑐𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})
8672, 85anbi12i 733 . . . . . . . . . . . 12 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}))
87 selpw 4165 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁)))
8871, 86, 873imtr4i 281 . . . . . . . . . . 11 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
8933, 88impbii 199 . . . . . . . . . 10 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
9089anbi1i 731 . . . . . . . . 9 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (#‘𝑐) = 𝑀))
914rabeq2i 3197 . . . . . . . . . 10 (𝑐𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀))
9291anbi1i 731 . . . . . . . . 9 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
9314, 90, 923bitr4i 292 . . . . . . . 8 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀) ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
9493abbii 2739 . . . . . . 7 {𝑐 ∣ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀)} = {𝑐 ∣ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐)}
95 df-rab 2921 . . . . . . 7 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} = {𝑐 ∣ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (#‘𝑐) = 𝑀)}
96 df-rab 2921 . . . . . . 7 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} = {𝑐 ∣ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐)}
9794, 95, 963eqtr4i 2654 . . . . . 6 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
9897fveq2i 6194 . . . . 5 (#‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}) = (#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
99 fzfi 12771 . . . . . . 7 (2...(𝑀 + 𝑁)) ∈ Fin
1002nnzi 11401 . . . . . . 7 𝑀 ∈ ℤ
101 hashbc 13237 . . . . . . 7 (((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((#‘(2...(𝑀 + 𝑁)))C𝑀) = (#‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}))
10299, 100, 101mp2an 708 . . . . . 6 ((#‘(2...(𝑀 + 𝑁)))C𝑀) = (#‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀})
103 2z 11409 . . . . . . . . . . . 12 2 ∈ ℤ
104103eluz1i 11695 . . . . . . . . . . 11 ((𝑀 + 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤ (𝑀 + 𝑁)))
10552, 45, 104mpbir2an 955 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ (ℤ‘2)
106 hashfz 13214 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ (ℤ‘2) → (#‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1))
107105, 106ax-mp 5 . . . . . . . . 9 (#‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)
1082nncni 11030 . . . . . . . . . . 11 𝑀 ∈ ℂ
1093nncni 11030 . . . . . . . . . . 11 𝑁 ∈ ℂ
110108, 109addcli 10044 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℂ
111 2cn 11091 . . . . . . . . . 10 2 ∈ ℂ
112 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
113 subadd23 10293 . . . . . . . . . 10 (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)))
114110, 111, 112, 113mp3an 1424 . . . . . . . . 9 (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))
115111, 112negsubdi2i 10367 . . . . . . . . . . 11 -(2 − 1) = (1 − 2)
116 2m1e1 11135 . . . . . . . . . . . 12 (2 − 1) = 1
117116negeqi 10274 . . . . . . . . . . 11 -(2 − 1) = -1
118115, 117eqtr3i 2646 . . . . . . . . . 10 (1 − 2) = -1
119118oveq2i 6661 . . . . . . . . 9 ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1)
120107, 114, 1193eqtri 2648 . . . . . . . 8 (#‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1)
121110, 112negsubi 10359 . . . . . . . 8 ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1)
122120, 121eqtri 2644 . . . . . . 7 (#‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1)
123122oveq1i 6660 . . . . . 6 ((#‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀)
124102, 123eqtr3i 2646 . . . . 5 (#‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀)
12598, 124eqtr3i 2646 . . . 4 (#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀)
1262, 3, 4ballotlem1 30548 . . . 4 (#‘𝑂) = ((𝑀 + 𝑁)C𝑀)
127125, 126oveq12i 6662 . . 3 ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
12813, 127eqtri 2644 . 2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
129 0le1 10551 . . . . 5 0 ≤ 1
130 0re 10040 . . . . . 6 0 ∈ ℝ
131130, 22, 41letri 10166 . . . . 5 ((0 ≤ 1 ∧ 1 ≤ 𝑀) → 0 ≤ 𝑀)
132129, 38, 131mp2an 708 . . . 4 0 ≤ 𝑀
1333nngt0i 11054 . . . . . 6 0 < 𝑁
13442, 133elrpii 11835 . . . . 5 𝑁 ∈ ℝ+
135 ltaddrp 11867 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑀 < (𝑀 + 𝑁))
13641, 134, 135mp2an 708 . . . 4 𝑀 < (𝑀 + 𝑁)
137 0z 11388 . . . . 5 0 ∈ ℤ
138 elfzm11 12411 . . . . 5 ((0 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁))))
139137, 52, 138mp2an 708 . . . 4 (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁)))
140100, 132, 136, 139mpbir3an 1244 . . 3 𝑀 ∈ (0...((𝑀 + 𝑁) − 1))
141 bcm1n 29554 . . 3 ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)))
142140, 51, 141mp2an 708 . 2 ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))
143 pncan2 10288 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
144108, 109, 143mp2an 708 . . 3 ((𝑀 + 𝑁) − 𝑀) = 𝑁
145144oveq1i 6660 . 2 (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁))
146128, 142, 1453eqtri 2648 1 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  {cab 2608  {crab 2916  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  Ccbc 13089  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118
This theorem is referenced by:  ballotth  30599
  Copyright terms: Public domain W3C validator